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1 Unconditional Convergence

Definition 1.1. Let (xn) be a sequence of real numbers. We say that
∑

xn is unconditionally convergent if
and only if for all permutations (bijections) σ : N → N we have

∑
n xσ(n) converges.

Remark. It can be shown that if
∑

xn converges unconditionally, then
∑

xσ(n) converges to the same limit
for any permutation σ ∈ S(N).

1.1 Quick Practice

1. Let (xn) be a sequence of real numbers. We say that
∑

xn converges absolutely if
∑

|xn| converges.

(a) Find an example of a series that converges but does not converge absolutely.

(b) Show that
∑

xn converges unconditionally if
∑

xn converges absolutely.

Solution. (a).
∑

n
(−1)n

n and many more by the alternating series test. (b). See lecture notes.

2. Let (xn) be a sequence of real numbers. Show that
∑

xn converges unconditionally if and only if for all
ϵ > 0, there exists N ∈ N such that for all finite sets F ⊂ [n,∞) ∩ N, we have

∣∣∑
n∈F xn

∣∣ < ϵ.

Solution. (⇐). Let σ ∈ S(N). We want to show that
∑

n xσ(n) converges. By Cauchy Criteria, it
suffices to show that the partial sum (

∑n
k=1 xσ(k)) is a Cauchy sequence. Now let ϵ > 0. Then by

assumption, there exists N ∈ N such that
∣∣∑

n∈F xn

∣∣ < ϵ for all finite sets F ⊂ [n,∞) ∩ N. Now take
K large enough such that K > π−1(1), · · · , π−1(N). Hence by the choice of K, for all k ≥ K, we
have σ(k) ≥ N . Therefore, for all n,m ≥ K, it follows that {σ(k)}mk=n ⊂ [N,∞) ∩ N. Hence, we have∣∣∑m

k=n xσ(k)

∣∣ < ϵ.
(⇒). Suppose not. Then there exists ϵ > 0 such that for all n ∈ N, there exists a finite subset F ⊂ N with
minF ≥ n such that

∣∣∑
n∈Fxn

∣∣ ≥ ϵ. From this, note that there exists a sequence of disjoint finite subsets

(Fn) of N with the property that maxFn < minFn+1 such that
∣∣∑

k∈Fn
xk

∣∣ ≥ ϵ for all n ∈ N. Now we
define σ ∈ S(N) by separately defining its action on In := [maxFn−1 + 1,maxFn] for all n ≥ 0 with
F0 := {0}: on In, we define σ to place all elements of Fn to go after In\Fn. With a careful observation on
the definition of σ, it would imply that

∑
n xσ(n) does not have Cauchy partial sums as

∣∣∑
k∈Fn

xk

∣∣ ≥ ϵ
is the sum of consecutive elements in the defined permutation.

3. Let (xn) be a sequence of real numbers.

(a) Show that
∑

xn converges unconditionally if and only if
∑

ϵnxn converges for all (ϵn) ∈ {0, 1}N,
that is (ϵn) is a sequence of signs. Hint: Q2 could be useful

(b) Show that
∑

xn converges unconditionally if and only if
∑

ϵnxn converges for all (ϵn) ∈ {±1}N,
that is (ϵn) is a sequence of signs.

(c) Hence, give an alternative proof that if
∑

xn converges absolutely then
∑

xn converges uncondi-
tionally.

(d) Show that the converse of part (ii) is true: if
∑

xn converges unconditionally, then
∑

xn converges
absolutely.

Solution.

(a) (⇒). Fix (ϵn) ∈ {0, 1}N. We want to show that
∑

ϵnxn has Cauchy partial sums.

Let ϵ > 0. By Q2, there exists N ∈ N such that for all finite sets F with minF ≥ N , we have∣∣∑
n∈F xn

∣∣ < ϵ. Note that when n,m ≥ N then we have
∑m

k=n ϵkxk =
∑

ϵk=1,k∈[n,m] xk. It follows

that |
∑m

k=n ϵkxk| ≤ ϵ.
(⇐). Suppose

∑
xn does not converge absolutely. Then by similar arguments in Q2, there exists

ϵ > 0 and a sequence of disjoint finite subsets (Fn) of N with maxFn < minFn+1s such that∣∣∑
k∈Fn

xk

∣∣ ≥ ϵ. The result follows by considering (ϵn) such that
∑maxFn

k=maxFn−1+1 ϵkxk =
∑

k∈Fn
xk

for all n ∈ N where F0 := {0}.
(b) Algebraic computations with part (a).

(c) Suppose
∑

xn converges absolutely. It suffices to show that
∑

n ϵnxn converges for all {n} ∈ {±1}N.
It is clear because |ϵnxn| = |xn| and so

∑
ϵnxn converges absolultely.

(d) Note that
∑

|xn| =
∑

ϵnxn for some (ϵn) ∈ {±1}N.
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4. Let (xn) be a sequence of real numbers. We say that (yn) is a block sequence of (xn) if there exists two
sequences of positive real numbers (pn), (qn) where p1 < q1 < p2 < q2 < · · · such that yn =

∑q1
i=p1

αixi

where (αi) is a sequence of real numbers.

(a) show that
∑

xn is not unconditionally converging if and only if there exists a block sequence (yn)
of (xn) with coefficients {0, 1} (that is (αi) ∈ {0, 1}N in the definition ) such that infn |yn| > 0.

(b) Suppose
∑

xn converges absolutely. Show that every block sequence with coefficients {0, 1} con-
verges absolutely.

Solution.

(a) We would be using the fact that a series
∑

xn converges unconditionally if and only if for all
(ϵn) ∈ {0, 1}N, the series

∑
ϵnxn converges, that is, every subseries converges.

(⇒). Suppose (xn) is not unconditionally converging. Then there exists a subseries (xnk
) that

does not converge. In particular, it is not Cauchy. Define sm :=
∑m

k=1 xnk
. It follows from the

non-Cauchiness that there exists ϵ > 0 and two subsequences (pn), (qn) satisfying p1 < q1 < p2 <
q2 < · · · such that ∥spn

− sqn∥ ≥ ϵ. Define Fj := {nk}
qj
k=pj

and yj :=
∑

i∈Fj
xi. Then it is clear

that maxFj < minFj+1 for all j ∈ N and so (yj) is a block of (xn). In addition it is clear from
construction that infn ∥yn∥ ≥ ϵ > 0.
(⇐). Suppose such block sequence exists. Write yn :=

∑
j∈Fn

xj where (Fn) are disjoint subsets of
N. Consider the subseries given by (xk)k∈

⋃
Fn

. Then it is not hard to see that such subseries does
not converge and so (xn) does not converge unconditionally.

(b) This is clear as
∑n

k=1 |yk| ≤
∑∞

k=1 |xk| for all n ∈ N and block sequence (yn).

5. Let (xn) be a sequence of real numbers. Show that
∑

xn converges unconditionally if and only if for all
bounded sequence of real numbers (λn) we have

∑
n λnxn converges.

Solution. (⇐). This follows as
∑

ϵnxn converges for all (ϵn) ∈ {±}N.
(⇒). Note that

∑n
k=1 |λnxn| ≤ ∥(λn)∥∞

∑n
k=1 |xn| ≤ ∥(λn)∥∞

∑∞
k=1 |xn|. In addition

∑
xn converges

absolutely as it converges unconditionally (by Q3). It follows that
∑

n λnxn converges absolutely and so
converges.

6. Name and verify a series that converges but is not unconditionally converging.

Solution. See Q1.

7. Let X be a normed space.

(a) Define suitable notions of unconditional converging series for X.

(b) Suppose X is a Banach space, that is a normed space satisfying the Cauchy criteria: every Cauchy
sequence converges. Show that the statements in Q1, 2, 4 under this more general setting are still
true.

(c) Following the previous part, show that Q3a, b, c are still true under the more general setting. With
the help of the internet, determine the condition that Q3d is still valid under the more general
setting and name the related Theorem.

Solution. (a). Similar to the definition for R but the convergence is under norms instead of absolute
values. (b). Similar proofs. Absolute convergence of a normed space is defined as the convergence
of

∑
∥xn∥. (c). Q3abc are similar but the absolute-value-to-signs-proof is not immediate for Q3c. For

Q3d, check the Dvoretzky-Rogers theorem on unconditional summability which states that unconditional
convergence implies absolute convergence if and only if the Banach X is of finite dimension.
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