1 Convergence of Functions

Definition 1.1. Let $D \subset \mathbb{R}$. Let $f_{n}: D \rightarrow \mathbb{R}$ be a sequence of functions. Let $f: D \rightarrow \mathbb{R}$. We say that

- $f_{n} \rightarrow f$ pointwise if $\lim _{n} f_{n}(x)=f(x)$ for all $x \in D$
- $f_{n} \rightarrow f$ uniformly if $\lim _{n} \sup _{x \in D}\left|f_{n}(x)-f(x)\right|=0$. In other words, for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in D$.

Quick Practice

1. Let $\left(f_{n}\right)$ be a sequence of functions on D.
(a) Show that if $f_{n} \rightarrow f$ uniformly on D then $f_{n} \rightarrow f$ point-wise on D.
(b) Show that $f_{n} \rightarrow f$ uniformly if and only if $f_{n}-f \rightarrow 0$ uniformly

Solution. (a). Fix $x \in D$. Then $\left|f_{n}(x)-f(x)\right| \leq \sup _{x \in D}\left|f_{n}(x)-f(x)\right|$ for all $n \in \mathbb{N}$. The result follows as $n \rightarrow \infty$ by sandwich theorem. (b). This is just a rewriting of the definition.
2. Let $\left(f_{n}\right)$ be a sequence of functions on $[0,1]$.
(a) Suppose $f_{n} \rightarrow f, g$ point-wise. Show that $f=g$ point-wise.
(b) Suppose $f_{n} \rightarrow f, g$ uniformly. Show that $f=g$ point-wise.

Solution. (a). Fix $x \in[0,1]$. The $0 \leq|f(x)-g(x)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-g(x)\right|$ for all $n \in \mathbb{N}$ by the triangle inequality. The result follows from the squeeze theorem. (b) follows from (a) as uniform convergence implies point-wise convergence.
3. Let $\left(f_{n}\right)$ be a sequence functions on D. Suppose $\left(f_{n}\right)$ converges uniformly.
(a) Suppose $\left(f_{n}\right)$ is a sequence of bounded function. Show that $\left(f_{n}\right)$ is uniformly bounded, that is, there exists $M>0$ such that $\sup _{x \in D}\left|f_{n}(x)\right|<M$ for all $n \in \mathbb{N}$.
(b) Suppose $\left(f_{n}\right)$ is a sequence of uniformly continuous functions. Show that $\left(f_{n}\right)$ is equi-continuous, that is, for all $\epsilon>0$, there exists $\delta>0$ such that whenver $x, y \in D$ are with $|x-y|<\delta$, that $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$ for all $n \in \mathbb{N}$.

Solution. Write f the uniform limit. (a). Note that for all $x \in D$, we have $|f(x)| \leq\left|f_{n}(x)-f(x)\right|+$ $\left|f_{n}(x)\right| \leq \sup _{x \in D}\left|f_{n}(x)-f(x)\right|+\left\|f_{n}\right\|_{\infty}$ for all $n \in \mathbb{N}$. Take $N \in \mathbb{N}$ such that $\sup _{x \in D}\left|f_{n}(x)-f(x)\right| \leq 1$ for $n \geq N$, then we have $\|f\|_{\infty} \leq 1+\left\|f_{N}\right\|_{\infty}<\infty$ and so f is bounded. Next, observe that for all $n \geq N$, we have $\left|f_{n}(x)\right| \leq\left|f_{n}-f\right|_{\infty}+\|f\|_{\infty} \leq 1+\|f\|_{\infty}$ and so $\left\|f_{n}\right\|_{\infty} \leq 1+\|f\|_{\infty}$ for all $n \geq N$. Take $M:=\max \left\{\left\|f_{1}\right\|_{\infty}, \cdots,\left\|f_{N}\right\|_{\infty}, 1+\|f\|_{\infty}\right\}$ then M is a uniform bound for $\left(f_{n}\right)$.
(b). Let $\epsilon>0$. Take $N \in \mathbb{N}$ such that $\left|f_{n}-f\right|_{\infty}<\epsilon$ for $n \geq N$. Let $\delta_{i}>0$ be such that $\left|f_{i}(x)-f_{i}(y)\right|<\epsilon$ if $|x-y|<\delta_{i}$ for all $i \in \mathbb{N}$. Hence, when $|x-y|<\delta_{N}$, we have $|f(x)-f(y)| \leq$ $\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right| \leq 3 \epsilon$. It follows that f is uniform continuous. Next, let $\delta:=\min \left\{\delta_{1}, \cdots, \delta_{N}\right\}$. Then when $|x-y|<\delta$, we have $\left|f_{i}(x)-f_{i}(y)\right|<\epsilon$ when $i=1, \cdots, N$. When $i>N$, we also have $\left|f_{i}(x)-f_{i}(y)\right| \leq\left|f(x)-f_{i}(x)\right|+|f(x)-f(y)|+\left|f(y)-f_{i}(y)\right| \leq \epsilon+3 \epsilon+\epsilon \leq 5 \epsilon$. It follows that $\left(f_{n}\right)$ is equi-continuous.
4. Suppose $\left(f_{n}\right)$ is a sequence of functions over D that are continuous at $c \in D$. Further suppose $f_{n} \rightarrow f$ uniformly. Show that f is continuous at c.
Solution. See lecture notes.
5. Let $\left(f_{n}\right)$ be a sequence of functions on D. Suppose $\left(f_{n}\right)$ does not converge to 0 uniformly.
(a) Show that there exists $\epsilon>0$, a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ and a sequence of points $\left(x_{n}\right)$ in D such that $\left|f_{n_{k}}\left(x_{k}\right)\right| \geq \epsilon$ for all $k \in \mathbb{N}$.
(b) Show that $\varlimsup_{n} \sup _{x \in D}\left|f_{n}(x)\right|>0$.

Solution. (a). By the negation. There exists $\epsilon>0$ such that $\sup _{x \in D}\left|f_{n_{k}}(x)\right| \geq \epsilon$ for some $n_{k} \geq k \in \mathbb{N}$ for all $k \in \mathbb{N}$. Fix $k \in \mathbb{N}$, by the definition of supremum, there exists $x_{k} \in D$ with $\left|f_{n_{k}}\left(x_{k}\right)\right| \geq \epsilon / 2$.
 $\sup _{x \in D}\left|f_{n}(x)\right| \geq 0$ for all $n \in \mathbb{N}$. It follows that $\varlimsup \sup _{x \in D}\left|f_{n}(x)\right|>0$ as the limit is non-zero.
6. For each of the following domains $D \subset \mathbb{R}$ and sequences of functions $f_{n}: D \rightarrow \mathbb{R}$,
(a). Find its point-wise limit f.
(b). Determine whether $f_{n} \rightarrow f$ uniformly.
i. $f_{n}(x):=\frac{x}{x+n}, D=[0, t], t>0$
ii. $f_{n}(x):=\frac{x}{x+n}, D=[0, \infty)$
iii. $f_{n}(x):=\frac{x^{2}+n x}{n}, D=\mathbb{R}$
iv. $f_{n}(x):=x^{n}, D=[0, t], t \in(0,1)$
v. $f_{n}(x):=x^{n}, D=[0,1]$
vi. $f_{n}(x)=x^{1+\frac{1}{2 n+1}}, D=[-1,1]$
vii. $f_{n}(x):=\frac{1}{n\left(1+x^{2}\right)}, D=\mathbb{R}$
viii. $f_{n}(x):=\left\{\begin{array}{l}1 \quad x=1,1 / 2, \cdots, 1 / n \\ 0 \quad \text { otherwise }\end{array}, D=[0,1]\right.$
ix. $f_{n}(x):=\left\{\begin{array}{ll}x & x=1,1 / 2, \cdots, 1 / n \\ 0 & \text { otherwise }\end{array}, D=[0,1]\right.$
x. Enumerate $\mathbb{Q} \cap[0,1]=\left(q_{n}\right)$. Define $f_{n}(x):=\left\{\begin{array}{cc}1 & x=q_{1}, \cdots, q_{n} \\ 0 & \text { otherwise }\end{array}, D=[0,1]\right.$

Solution. (i). $f(x)=0$; the convergence is uniform: $\left|f_{n}(x)\right| \leq f_{n}(t)$
(ii). $f(x)=0$; the convergence is not uniform: consider $x_{n}:=n$.
(iii). $f(x)=x$; the convergence is not uniform: consider $x_{n}:=n$.
(iv). $f(x)=0$; the convergence is uniform: $\left|f_{n}(x)\right| \leq t^{n}$ for all $n \in \mathbb{N}$ and $x \in[0, t]$.
(v). $f=\mathbb{1}_{\{1\}}$; the convergence is not uniform: the point-wise limit is not continuous at 1 but the sequence is.
(vi). $f(x)=|x|$; the convergence is uniform. The proof is as follows. We first show the uniform convergence on $[0,1]$. Let $\epsilon>0$. Then

$$
\left|f_{n}(x)-f(x)\right|=\left|x x^{1 /(2 n+1)}-x\right|=\left|x\left(x^{1 /(2 n+1)-1}\right)\right|=x\left(1-x^{1 /(2 n+1)}\right)
$$

When $x \in[0, \epsilon]$, we have $\left|f_{n}(x)-f(x)\right| \leq \epsilon \cdot 1=\epsilon$. When $x \in[\epsilon, 1]$, we have $\left|f_{n}(x)-f(x)\right| \leq$ $1 \cdot\left(1-\epsilon^{1 /(2 n+1)}\right)$. Combining the two, it follows that

$$
\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \leq \epsilon+\left(1-\epsilon^{1 /(2 n+1)}\right)
$$

As $n \rightarrow \infty$, we have $\limsup _{n} \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \leq \epsilon+1-1=\epsilon\left(\right.$ since $\left.\epsilon^{1 /(2 n+1)} \rightarrow 1\right)$. As ϵ is arbitrary, it follows that we have $\limsup _{n} \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|=0$ as $\epsilon \rightarrow 0$ and so we can conclude that $\lim _{n} \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|=0$. Similarly, the convergence is uniform on $[-1,0]$. Hence the convergence is uniform on the union $[-1,1]=[-1,0] \cup[0,1]$
(vii). $f(x)=0$; the convergence is uniform: $\left|f_{n}(x)\right| \leq 1 / n$ for all $x \in \mathbb{R}$.
(viii). $f=\mathbb{1}_{\left\{\frac{1}{k}: k \in \mathbb{N}\right\}}$; the convergence is not uniform: note that $f-f_{n}=\mathbb{1}_{\left\{\frac{1}{k}: k \geq n+1\right\}}$ and so taking $x_{n}:=(n+1)^{-1}$ will do.
(ix). $f(x)=x \mathbb{1}_{\left\{\frac{1}{n}: n \in \mathbb{N}\right\}}(x)$. The convergence is uniform. Note that $\left|f_{n}(x)-f(x)\right| \leq(n+1)^{-1}$.
(x). $f(x)=\mathbb{1}_{\mathbb{Q}}$. The convergence is not uniform since f is not Riemann integrable but $\left(f_{n}\right)$ is a sequence of integrable functions (over $[0,1]$).
7. Let $\left(f_{n}\right)$ be a sequence of functions on D.
(a) (Cauchy Criteria). Show that f_{n} converges uniformly if and only if for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for $n, m \geq N$, we have $\left|f_{n}(X)-f_{m}(x)\right|<\epsilon$ for all $x \in D$
(b) (Weierstrass M-test). Define $S_{n}(x):=\sum_{i=1}^{n} f_{i}(x)$ for all $x \in D$ and $n \in \mathbb{N}$. Suppose there exists a sequence of summable positive real numbers $\left(M_{n}\right)$ (that is $\left.\sum M_{n}<\infty\right)$ such that $\sup _{x \in D}\left|f_{n}(x)\right| \leq$ M_{n} for all $n \in \mathbb{N}$. Show that S_{n} converges uniformly.
Solution. See Lecture notes.

