1 Convergence of Functions

Definition 1.1. Let $D \subset \mathbb{R}$. Let $f_{n}: D \rightarrow \mathbb{R}$ be a sequence of functions. Let $f: D \rightarrow \mathbb{R}$. We say that

- $f_{n} \rightarrow f$ pointwise if $\lim _{n} f_{n}(x)=f(x)$ for all $x \in D$
- $f_{n} \rightarrow f$ uniformly if $\lim _{n} \sup _{x \in D}\left|f_{n}(x)-f(x)\right|=0$. In other words, for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in D$.

Quick Practice

1. Let $\left(f_{n}\right)$ be a sequence of functions on D.
(a) Show that if $f_{n} \rightarrow f$ uniformly on D then $f_{n} \rightarrow f$ point-wise on D.
(b) Show that $f_{n} \rightarrow f$ uniformly if and only if $f_{n}-f \rightarrow 0$ uniformly
2. Let $\left(f_{n}\right)$ be a sequence of functions on $[0,1]$.
(a) Suppose $f_{n} \rightarrow f, g$ point-wise. Show that $f=g$ point-wise.
(b) Suppose $f_{n} \rightarrow f, g$ uniformly. Show that $f=g$ point-wise.
3. Let $\left(f_{n}\right)$ be a sequence functions on D. Suppose $\left(f_{n}\right)$ converges uniformly.
(a) Suppose $\left(f_{n}\right)$ is a sequence of bounded function. Show that $\left(f_{n}\right)$ is uniformly bounded, that is, there exists $M>0$ such that $\sup _{x \in D}\left|f_{n}(x)\right|<M$ for all $n \in \mathbb{N}$.
(b) Suppose $\left(f_{n}\right)$ is a sequence of uniformly continuous functions. Show that $\left(f_{n}\right)$ is equi-continuous, that is, for all $\epsilon>0$, there exists $\delta>0$ such that whenver $x, y \in D$ are with $|x-y|<\delta$, that $\left|f_{n}(x)-f_{n}(y)\right|<\epsilon$ for all $n \in \mathbb{N}$.
4. Suppose $\left(f_{n}\right)$ is a sequence of functions over D that are continuous at $c \in D$. Further suppose $f_{n} \rightarrow f$ uniformly. Show that f is continuous at c.
5. Let $\left(f_{n}\right)$ be a sequence of functions on D. Suppose $\left(f_{n}\right)$ does not converge to 0 uniformly.
(a) Show that there exists $\epsilon>0$, a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ and a sequence of points $\left(x_{n}\right)$ in D such that $\left|f_{n_{k}}\left(x_{k}\right)\right| \geq \epsilon$ for all $k \in \mathbb{N}$.
(b) Show that $\varlimsup_{n} \sup _{x \in D}\left|f_{n}(x)\right|>0$.
6. For each of the following domains $D \subset \mathbb{R}$ and sequences of functions $f_{n}: D \rightarrow \mathbb{R}$,
(a). Find its point-wise limit f.
(b). Determine whether $f_{n} \rightarrow f$ uniformly.
i. $f_{n}(x):=\frac{x}{x+n}, D=[0, t], t>0$
ii. $f_{n}(x):=\frac{x}{x+n}, D=[0, \infty)$
iii. $f_{n}(x):=\frac{x^{2}+n x}{n}, D=\mathbb{R}$
iv. $f_{n}(x):=x^{n}, D=[0, t], t \in(0,1)$
v. $f_{n}(x):=x^{n}, D=[0,1]$
vi. $f_{n}(x)=x^{1+\frac{1}{2 n+1}}, D=[-1,1]$
vii. $f_{n}(x):=\frac{1}{n\left(1+x^{2}\right)}, D=\mathbb{R}$
viii. $f_{n}(x):=\left\{\begin{array}{ll}1 & x=1,1 / 2, \cdots, 1 / n \\ 0 & \text { otherwise }\end{array}, D=[0,1]\right.$
ix. $f_{n}(x):=\left\{\begin{array}{ll}x & x=1,1 / 2, \cdots, 1 / n \\ 0 & \text { otherwise }\end{array}, D=[0,1]\right.$
x. Enumerate $\mathbb{Q} \cap[0,1]=\left(q_{n}\right)$. Define $f_{n}(x):=\left\{\begin{array}{l}1 \quad x=q_{1}, \cdots, q_{n} \\ 0 \quad \text { otherwise }\end{array}, D=[0,1]\right.$
7. Let $\left(f_{n}\right)$ be a sequence of functions on D.
(a) (Cauchy Criteria). Show that f_{n} converges uniformly if and only if for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for $n, m \geq N$, we have $\left|f_{n}(X)-f_{m}(x)\right|<\epsilon$ for all $x \in D$
(b) (Weierstrass M-test). Define $S_{n}(x):=\sum_{i=1}^{n} f_{i}(x)$ for all $x \in D$ and $n \in \mathbb{N}$. Suppose there exists a sequence of summable positive real numbers $\left(M_{n}\right)$ (that is $\left.\sum M_{n}<\infty\right)$ such that $\sup _{x \in D}\left|f_{n}(x)\right| \leq$ M_{n} for all $n \in \mathbb{N}$. Show that S_{n} converges uniformly.
