Unless otherwise specified, if we write (a, b) or [a, b], it is always the case that $a < b \in \mathbb{R}$.

1 Improper Integrals

Definition 1.1. Let $f : [a, b) \to \mathbb{R}$ be a function with $-\infty < a < b \le \infty$. Suppose $f \in \mathcal{R}([a, c])$ for all $c \in [a, b)$. Then we define

$$\int_{a}^{b} f := \lim_{c \to b^{-}} \int_{a}^{c} f$$

to be the impropert integral of f over [a, b) if the limit exists.

Quick Practice

- 1. Evaluate the improper integral $\int_0^\infty e^{-t} dt$ Solution. Covered in Tutorial.
- 2. Suppose $f \in \mathcal{R}([0,t])$ for all t > 0. Show that $\int_0^\infty f$ exists if and only if for all $\epsilon > 0$, there exists M > 0 such that s, t > M would imply $\left| \int_s^t f \right| < \epsilon$

Solution. Covered in Tutorial and Lecture Note.

- Suppose f ∈ R([0,t]) for all t > 0. Show that if ∫₀[∞] |f| exists, then ∫₀[∞] f exists.
 Solution. Covered in Tutorial and lecture note.
- 4. Let $f : [0, \infty)$ be non-negative and $f \in \mathcal{R}([0, t])$ for all t > 0. Define $F(t) := \int_0^t f$ for all $t \ge 0$. Show that $\int_0^\infty f$ exists if and only if F is bounded on $[0, \infty)$. Solution. Covered in Tutorial.
- 5. Define $f(\alpha) := 1/\alpha$ and $g_t(\alpha) := e^{-\alpha t}$ for all $t, \alpha > 0$.
 - (a) Find $g'(\alpha)$ and $g'_t(\alpha)$ for all $\alpha, t > 0$.
 - (b) Show that $f(\alpha) = \int_0^\infty g_t(\alpha) dt$ for all $\alpha > 0$.
 - (c) Is it true that $f'(\alpha) = \int_0^\infty g'_t(\alpha) dt$ for all $\alpha > 0$?

Solution. (a) is easy. (b), (c): Use integration by part, a.k.a. FTC on the product rule.

- 6. (Integral Test). Let $f:[0,\infty)$ be a non-negative, decreasing function.
 - (a) Show that for all $N > 1 \in \mathbb{N}$, we have

$$\int_1^{N+1} f \le \sum_{k=1}^N f(k) \le \int_0^N f$$

(b) Show that $\int_{1}^{\infty} f$ exists if and only if $\sum_{n=1}^{\infty} f(n)$ exists.

(c) Show that

$$\sum_{n=2}^{\infty} f(n) \le \int_{1}^{\infty} f \le \sum_{n=1}^{\infty} f(n)$$

whenever the conditions in part (b) holds.

- (d) Show that $\sum_{n=1}^{\infty} \frac{1}{n^p} < \infty$ for all p > 1 and conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2} \in [1, 2]$ Solution. Covered in Tutorial.
- 7. Let $f(x) := \frac{x \log(x)}{1+x^2}$ for $x \in (0,1]$ and f(0) := 0.
 - (a) Show that there exists M > 0 and t > 0 such that $|x \log x| \le M\sqrt{x}$ for all $x \in (0, t)$
 - (b) Show that $\int_0^1 \frac{x \log x}{1+x^2}$ exists.

Solution. (a). It suffices to show that $\lim_{x\to 0^+} \frac{x \log(x)}{\sqrt{x}} = \lim_{x\to 0^+} \sqrt{x} \log(x) = 0$. Note that we have the limit $\lim_{x\to 0^+} \frac{1}{\sqrt{x}} = \infty$ with $(1/\sqrt{x})' = \frac{-1}{2}x^{-3/2}$ for $x \in (0, 1)$, which is never 0. Hence, we can apply the L'Hospital Rule that

$$\lim_{x \to 0^+} \frac{\log(x)}{1/\sqrt{x}} = \lim_{x \to 0^+} \frac{1/x}{-1/2x^{3/2}} = \lim_{x \to 0^+} -2\sqrt{x} = 0$$

The requirement in question follows from the definition of limits.

(b). It suffices to show that $f(x) \in \mathcal{R}([0,t])$ and $\mathcal{R}([t,1])$ where t is the constant from part (a). The latter is true since f is continuous there. To show the former, it suffices to show that $|f| \in \mathcal{R}([0,t])$ by Q2. Note that $|f| \in \mathcal{R}[s,t]$ for all s > 0 as |f| is continuous there. In addition we have

$$\int_{s}^{t} |f| \le \int_{s}^{t} M \frac{\sqrt{x}}{1+x^{2}} \le \int_{0}^{1} M \frac{\sqrt{x}}{(1+x^{2})} < \infty$$

The last term is finite because $\frac{\sqrt{x}}{1+x^2}$ is continuous on [0, 1]. It follows from Q4 that the improper integral $\int_0^t |f| < \infty$ and so $\int_0^t f$ exists.

8. (2016 - 17 Final Q2) Let $f: [1, \infty) \to \mathbb{R}$ be defined by $f(x) := \frac{\sin(x)}{x}$.

- (a) Show that $\int_{1}^{\infty} f(x) dx$ exists.
- (b) Show that $\int_{1}^{\infty} |f(x)| dx$ diverges.

Solution. Covered in 2020-2021 2060B Tutorial 7, which is available here.

2 Convergence of Functions

Definition 2.1. Let $D \subset \mathbb{R}$. Let $f_n : D \to \mathbb{R}$ be a sequence of functions. Let $f : D \to \mathbb{R}$. We say that

- $f_n \to f$ pointwise if $\lim_n f_n(x) = f(x)$ for all $x \in D$
- $f_n \to f$ uniformly if $\lim_n \sup_{x \in D} |f_n(x) f(x)| = 0$. In other words, for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, we have $|f_n(x) f(x)| < \epsilon$ for all $x \in D$.

Quick Practice

1. Let (f_n) be a sequence of functions on D. Show that if $f_n \to f$ uniformly on D then $f_n \to f$ point-wise on D.

Solution. Covered in lecture.

- 2. Let (f_n) be a sequence of functions on D. Suppose (f_n) does not converge to 0 uniformly.
 - (a) Show that there exists $\epsilon > 0$, a subsequence (f_{n_k}) of (f_n) and a sequence of points (x_n) in D such that $|f_{n_k}(x_k)| \ge \epsilon$ for all $k \in \mathbb{N}$.
 - (b) Show that $\overline{\lim}_n \sup_{x \in D} |f_n(x)| > 0.$

Solution. (a). Consider negation of uniform convergence. (b). Clearly follows from part (a).

- 3. Let (f_n) be a sequence of functions on [0, 1].
 - (a) Suppose $f_n \to f, g$ point-wise. Show that f = g point-wise.
 - (b) Suppose $f_n \to f, g$ uniformly. Show that f = g point-wise.
 - (c) Further assume $f_n \in \mathcal{R}([0,1])$ and $f_n \ge 0$ pointwise. Suppose $f_n \to f, g$ in expectation, that is, $\lim \int_0^1 f_n = \int_0^1 f = \int_0^1 g$. Is it true that f = g pointwise? What can you conclude about f and g?

Solution. (a), (b) are easy. (c). No. In fact f and g could be very different in a sense that we can find $f \ge 0$ to satisfy the convergence with g being negative on some intervals but very positive on others. Note that this convergence is weaker than $\int_0^1 |f_n - f| \to 0$.

- 4. Define $f_n(x) := \frac{x}{x+n}$ for all $x \in [0, \infty)$ and $n \in \mathbb{N}$.
 - (a) Show that f_n converges point-wise on $[0, \infty)$ and find the limit.
 - (b) Show that f_n does not converge uniformly on $[0,\infty)$
 - (c) Show that f_n converges uniformly on [0, t] for all t > 0.

Solution. It is a possible HW question so we skip the solution.