Unless otherwise specified, if we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 Improper Integrals

Definition 1.1. Let $f:[a, b) \rightarrow \mathbb{R}$ be a function with $-\infty<a<b \leq \infty$. Suppose $f \in \mathcal{R}([a, c])$ for all $c \in[a, b)$. Then we define

$$
\int_{a}^{b} f:=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f
$$

to be the impropert integral of f over $[a, b)$ if the limit exists.

Quick Practice

1. Evaulate the improper integral $\int_{0}^{\infty} e^{-t} d t$
2. Suppose $f \in \mathcal{R}([0, t])$ for all $t>0$. Show that $\int_{0}^{\infty} f$ exists if and only if for all $\epsilon>0$, there exists $M>0$ such that $s, t>M$ would imply $\left|\int_{s}^{t} f\right|<\epsilon$
3. Suppose $f \in \mathcal{R}([0, t])$ for all $t>0$. Show that if $\int_{0}^{\infty}|f|$ exists, then $\int_{0}^{\infty} f$ exists.
4. Let $f:[0, \infty)$ be non-negative and $f \in \mathcal{R}([0, t])$ for all $t>0$. Define $F(t):=\int_{0}^{t} f$ for all $t \geq 0$. Show that $\int_{0}^{\infty} f$ exists if and only if F is bounded on $[0, \infty)$.
5. Define $f(\alpha):=1 / \alpha$ and $g_{t}(\alpha):=e^{-\alpha t}$ for all $t, \alpha>0$.
(a) Find $g^{\prime}(\alpha)$ and $g_{t}^{\prime}(\alpha)$ for all $\alpha, t>0$.
(b) Show that $f(\alpha)=\int_{0}^{\infty} g_{t}(\alpha) d t$ for all $\alpha>0$.
(c) Is it true that $f^{\prime}(\alpha)=\int_{0}^{\infty} g_{t}^{\prime}(\alpha) d t$ for all $\alpha>0$?
6. (Integral Test). Let $f:[0, \infty)$ be a non-negative, decreasing function.
(a) Show that for all $N>1 \in \mathbb{N}$, we have

$$
\int_{1}^{N+1} f \leq \sum_{k=1}^{N} f(k) \leq \int_{0}^{N} f
$$

(b) Show that $\int_{1}^{\infty} f$ exists if and only if $\sum_{n=1}^{\infty} f(n)$ exists.
(c) Show that

$$
\sum_{n=2}^{\infty} f(n) \leq \int_{1}^{\infty} f \leq \sum_{n=1}^{\infty} f(n)
$$

whenever the conditions in part (b) holds.
(d) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}<\infty$ for all $p>1$ and conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \in[1,2]$
7. Let $f(x):=\frac{x \log (x)}{1+x^{2}}$ for $x \in(0,1]$ and $f(0):=0$.
(a) Show that there exists $M>0$ and $t>0$ such that $|x \log x| \leq M \sqrt{x}$ for all $x \in(0, t)$
(b) Show that $\int_{0}^{1} \frac{x \log x}{1+x^{2}}$ exists.
8. (2016-17 Final Q2) Let $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by $f(x):=\frac{\sin (x)}{x}$.
(a) Show that $\int_{1}^{\infty} f(x) d x$ exists.
(b) Show that $\int_{1}^{\infty}|f(x)| d x$ diverges.

2 Convergence of Functions

Definition 2.1. Let $D \subset \mathbb{R}$. Let $f_{n}: D \rightarrow \mathbb{R}$ be a sequence of functions. Let $f: D \rightarrow \mathbb{R}$. We say that

- $f_{n} \rightarrow f$ pointwise if $\lim _{n} f_{n}(x)=f(x)$ for all $x \in D$
- $f_{n} \rightarrow f$ uniformly if $\lim _{n} \sup _{x \in D}\left|f_{n}(x)-f(x)\right|=0$. In other words, for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in D$.

Quick Practice

1. Let $\left(f_{n}\right)$ be a sequence of functions on D. Show that if $f_{n} \rightarrow f$ uniformly on D then $f_{n} \rightarrow f$ point-wise on D.
2. Let $\left(f_{n}\right)$ be a sequence of functions on D. Suppose $\left(f_{n}\right)$ does not converge to 0 uniformly.
(a) Show that there exists $\epsilon>0$, a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ and a sequence of points $\left(x_{n}\right)$ in D such that $\left|f_{n_{k}}\left(x_{k}\right)\right| \geq \epsilon$ for all $k \in \mathbb{N}$.
(b) Show that $\varlimsup_{n} \sup _{x \in D}\left|f_{n}(x)\right|>0$.
3. Let $\left(f_{n}\right)$ be a sequence of functions on $[0,1]$.
(a) Suppose $f_{n} \rightarrow f, g$ point-wise. Show that $f=g$ point-wise.
(b) Suppose $f_{n} \rightarrow f, g$ uniformly. Show that $f=g$ point-wise.
(c) Further assume $f_{n} \in \mathcal{R}([0,1])$ and $f_{n} \geq 0$ pointwise. Suppose $f_{n} \rightarrow f, g$ in expectation, that is, $\lim \int_{0}^{1} f_{n}=\int_{0}^{1} f=\int_{0}^{1} g$. Is it true that $f=g$ pointwise? What can you conclude about f and g ?
4. Define $f_{n}(x):=\frac{x}{x+n}$ for all $x \in[0, \infty)$ and $n \in \mathbb{N}$.
(a) Show that f_{n} converges point-wise on $[0, \infty)$ and find the limit.
(b) Show that f_{n} does not converge uniformly on $[0, \infty)$
(c) Show that f_{n} converges uniformly on $[0, t]$ for all $t>0$.
