1. Let f be a real-valued function defined on $[0, \infty)$. Prove or disprove the following statements:
i. If $\int_{0}^{\infty} f(x) d x$ and $\lim _{x \rightarrow \infty} f(x)$ both exists, then $\lim _{x \rightarrow \infty} f(x)=0$
ii. If $\int_{0}^{\infty} f(x) d x$ exists, then $\lim _{x \rightarrow \infty} f(x)$ exists.

Solution.

i. The statement is true. Suppose not. Then $\lim _{x \rightarrow \infty} f(x) \neq 0$. WLOG suppose $\lim _{x \rightarrow \infty} f(x)=\epsilon>0$ (since $\lim _{x \rightarrow \infty} f(x)$ exists). Then $f(x)>\epsilon / 2$ for $x \geq M$. Hence it follows that for all $n \in \mathbb{N}$, we have

$$
\int_{M}^{M+n} f(x) d x \geq \int_{M}^{M+n} \frac{\epsilon}{2} d x=n \frac{\epsilon}{2}
$$

It follows we have for all $n \in \mathbb{N}$ that

$$
\int_{0}^{M+n} f(x) d x=\int_{0}^{M} f(x) d x+\int_{M}^{M+n} f(x) d x \geq \int_{0}^{M} f(x) d x+n \frac{\epsilon}{2}
$$

This implies that $\lim _{n} \int_{0}^{M+n} f(x) d x=\infty$ as $\lim n \epsilon / 2=\infty$. It follows from the sequential criteria that $\int_{0}^{\infty} f(x) d x=\infty$, which is a contradiction.
ii. The statement is false. Consider $f(x)=1 /(x+1)^{2}$ for $x \geq 0$. Note that f is continuous on $[0, b]$ for all $b \in(0, \infty)$. It follows from FTC that $\left.\int_{0}^{b} f(x) d x=-1 /(x+1)\right]_{0}^{b}=1-1 / b$. By taking limits, we have $\int_{0}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x=1$.
Now we consider another function g such that $g(x)=f(x)$ for all $x \geq 0$ and $x \notin \mathbb{N}$ and $g(n)=1$ for $n \in \mathbb{N}$. Note that for all $b>0, g=f$ except for finitely many points on $[0, b]$. Hence, we have $\int_{0}^{b} g=\int_{0}^{b} f$. It follows by taking limits that $\int_{0}^{\infty} g=\lim _{b \rightarrow \infty} \int_{0}^{b} f=\int_{0}^{\infty} f=1$, that is, $\int_{0}^{\infty} g(x) d x$ exists. However $\lim _{x \rightarrow \infty} f(x)$ does not exists since $g\left(x_{n}\right) \rightarrow 1$ where $x_{n}:=n$ but $g\left(x_{n}+1 / 2\right)=f\left(x_{n}+1 / 2\right)=1 /(n+1 / 2)^{2} \rightarrow 0$.

Remark.

- All of you correctly identified the truth of the statements. Well done!
- Many of you considered f in part (ii) to be the zero function, which is clearly Okay and simpler than the above solution. Meanwhile, a number of you considered functions with "hats" of diminishing width, which is also OK.
- Some of you confused the definition of improper integrals with the ordinary integral: ordinary integrals could be verified by an ϵ argument concerning upper and lower sum of partitions. However the case for improper integrals is not (as we may not be able to define upper/lower sums if functions or domains are unbounded). The latter is defined as the limit of ordinary integrals on compact intervals. In particular, theorems that are true for the ordinary integral may not be valid for improper integrals; one has to give some verification before using similar theorems, like the Lebesgue criteria.

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function. Write $M:=\sup _{x \in \mathbb{R}}|f(x)|$. For all $\lambda>0$, we define

$$
\psi_{\lambda}(x):=\inf \{g(x): g \text { is a } \lambda \text {-Lipschitz function on } \mathbb{R} \text { and } g \geq f \text { on } \mathbb{R}\}
$$

for all $x \in \mathbb{R}$. Write $\psi_{0}(x):=M$ for all $x \in \mathbb{R}$.
Suppose for all $t>0$, there exists $\lambda>0$ such that $\psi_{\lambda}(x)-f(x)<t$ for all $x \in \mathbb{R}$. With the assumption, we define for all $t>0$ that

$$
\tau(t):=\inf \left\{\lambda>0: \psi_{\lambda}(x)-f(x)<t \text { for all } x \in \mathbb{R}\right\}
$$

We also define

$$
\begin{equation*}
\phi(x):=\int_{0}^{1} \psi_{\tau(t)}(x) d t \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}$
i. Show that for all $\lambda>0$ that ψ_{λ} is a λ-Lipschitz function on \mathbb{R}.
ii. Show that the impropert integral in $\operatorname{Eq}(1)$ exists for all $x \in \mathbb{R}$, that is, the function $t \in[c, 1] \mapsto \psi_{\tau(t)}(x)$ is Riemann integrable for all $c \in(0,1]$ and $\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \psi_{\tau(t)}(x) d t$ exists.
iii. Show that the function ϕ is bounded and uniformly continuous on \mathbb{R}.

Solution.

i. Fix $\lambda>0$. Fix we show that $\psi_{\lambda}(x)$ is well-defined for all $x \in \mathbb{R}$. Set $g(x):=M$ for all $x \in \mathbb{R}$. Then it is clear that g is λ-Lipschitz for all $\lambda>0$ since it is a constant function. It is also clear that $g \geq f$ on \mathbb{R}. Therefore, $\psi_{\lambda}(x)$ is finite for all $x \in \mathbb{R}$.
Next, we show that ψ_{λ} is λ-Lipschitz. Let $x, y \in \mathbb{R}$. Let $\epsilon>0$. Then there exists $g, h \lambda$ - Lipschitz functions such that $\psi_{\lambda}(x)+\epsilon>g(x)$ and $\psi_{\lambda}(y)+\epsilon>h(y)$ by the definition of ψ_{λ}. Hence, we have

$$
\begin{aligned}
& \psi_{\lambda}(y)-\psi_{\lambda}(x)-\epsilon \leq \psi_{\lambda}(y)-g(x) \leq g(x)-g(y) \leq \lambda|x-y| \\
& \psi_{\lambda}(x)-\psi_{\lambda}(y)-\epsilon \leq \psi_{\lambda}(x)-h(y) \leq h(x)-h(y) \leq \lambda|x-y|
\end{aligned}
$$

Combining the two, we have $\left|\psi_{\lambda}(x)-\psi_{\lambda}(y)\right|-\epsilon \leq \lambda|x-y|$. The result follows as $\epsilon \rightarrow 0$.
ii. Fix $x \in \mathbb{R}$. Write $\alpha_{x}(t):=\psi_{\tau(t)}(x)$ for $t>0$.

Claim. We have $\alpha_{x}(t)$ is increasing for $t>0$
Proof of claim. To begin with, we show that τ is decreasing on $(0, \infty)$. Suppose $t_{1} \leq t_{2} \in(0,1)$. Then we have

$$
\left\{\lambda>0: \psi_{\lambda}(x)-f(x)<t_{1} \text { for all } x \in \mathbb{R}\right\} \subset\left\{\lambda>0: \psi_{\lambda}(x)-f(x)<t_{2} \text { for all } x \in \mathbb{R}\right\}
$$

It follows clearly that $\tau\left(t_{2}\right) \leq \tau\left(t_{1}\right)$ by taking infimums. Next, we show that $\psi_{\lambda}(x)$ is decreasing for $\lambda \geq 0$. This is because if $0<\lambda_{1} \leq \lambda_{2}$ then we have

$$
\left\{g(x): g \text { is a } \lambda_{1} \text {-Lipschitz function on } \mathbb{R} \text { and } g \geq f \text { on } \mathbb{R}\right\}
$$

$\subset\left\{g(x): g\right.$ is a λ_{2}-Lipschitz function on \mathbb{R} and $g \geq f$ on $\left.\mathbb{R}\right\}$
By taking infimums, we have $\psi_{\lambda_{2}}(x) \leq \psi_{\lambda_{1}}(x)$. The case where $\lambda_{1}=0$ is obvious using the definition of ψ_{0}. Combining the two, we have that $\alpha_{x}(t):=\psi_{\tau(t)}(x)$ is increasing for $t>0$.

By the claim, α_{x} is increasing on $(0,1]$. In particular, it is increasing on $[c, 1]$ for all $c \in(0,1)$. Hence $\alpha_{x} \in \mathcal{R}([c, 1])$ as monotone functions over compact intervals are Riemann integrable.
Next, we give a bound for α :
Claim. We have $\left|\alpha_{x}(t)\right| \leq M$ for all $t>0$.
Proof of claim. Fix $\lambda \geq 0$. Note that $\psi_{\lambda}(x) \geq f(x) \geq-M$ by the definition of ψ_{λ}. In addition, we have shown in the proof of the preivous claim that $\psi_{\lambda}(x) \leq \psi_{0}(x)=M$ (since the constant function $g \equiv M$ on \mathbb{R} is λ-Lipschitz for all $\lambda>0$ with $g \geq f$ on \mathbb{R}). It follows that $\left|\psi_{\lambda}(x)\right| \leq M$ for all $\lambda \geq 0$. Hence, we clearly have $\left|\alpha_{x}(t)\right| \leq M$ on $t>0$
To show that $\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \alpha_{x}(t) d t$ exists. We consider $\bar{\alpha}_{x}(t):=\alpha_{x}(t)+M \geq 0$ for all $t>0$. Note that $\bar{\alpha}_{x}(t)$ is non-negative and increasing on (0,1$]$. Define $F_{x}(c):=\int_{c}^{1} \bar{\alpha}_{x}(t) d t$ for all $c>0$. It follows that F_{x} is decreasing for $c \in(0,1]$ by splitting the domain of integration. Furthermore, $0 \leq F_{x}(c) \leq \int_{c}^{1}\left|\bar{\alpha}_{x}(t)\right| d t \leq$ $2 M$ for all $c \in(0,1]$. It follows from the bounded monotone theorem that $\lim _{c \rightarrow 0^{+}} F_{x}(c)$ exists. In particular, by linearity of integrals and limits, $\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \alpha_{x}(t) d t$ exists.
iii. First we show that ϕ is bounded. Fix $x \in \mathbb{R}$. Using the notations in part (ii), we have $\phi(x)=\lim _{c \rightarrow 0^{+}} F_{x}(c)$. As $0 \leq F_{x}(c) \leq 2 M$ for all $c \in(0,1]$, we have $0 \leq \phi(x) \leq 2 M$. The result follows as x is arbitrary. Next we show the uniform continuity. Let $\epsilon>0$. Let $x, y \in \mathbb{R}$. Pick $c \in(0, \epsilon)$ such that

$$
\left|\phi(x)-F_{c}(x)\right|,\left|\phi(y)-F_{c}(y)\right| \leq \epsilon
$$

Then, note that

$$
\begin{aligned}
\left|F_{c}(x)-F_{c}(y)\right| & =\left|\int_{c}^{1} \psi_{\tau(t)}(x)-\psi_{\tau(t)}(y) d t\right| \leq \int_{c}^{1}\left|\psi_{\tau(t)}(x)-\psi_{\tau(t)}(y)\right| d t \\
& =\int_{c}^{\epsilon}\left|\psi_{\tau(t)}(x)-\psi_{\tau(t)}(y)\right| d t+\int_{\epsilon}^{1}\left|\psi_{\tau(t)}(x)-\psi_{\tau(t)}(y)\right| d t \\
& \leq \int_{c}^{\epsilon}\left|\alpha_{x}\right|(t)+\left|\alpha_{y}\right|(t) d t+\int_{\epsilon}^{1} \tau(t)|x-y| d t \\
& \leq 2 M \epsilon+\int_{\epsilon}^{1} \tau(\epsilon) d t|x-y| \\
& \leq 2 M \epsilon+\tau(\epsilon)|x-y|
\end{aligned}
$$

Choose $\delta:=\min \{1, \epsilon / \tau(\epsilon)\}$ (we set $\epsilon / 0:=\infty$ if necessary). Then it follows that $\left|F_{c}(x)-F_{c}(y)\right| \leq(2 M+1) \epsilon$ as $|x-y| \leq \delta$. By triangle inequalities, we further have $|\phi(x)-\phi(y)| \leq(2 M+3) \epsilon$ when $|x-y| \leq \epsilon$. It follows that ϕ is uniform continuous on \mathbb{R}.

