- **1.** Let f be a real-valued function defined on $[0,\infty)$. Prove or disprove the following statements:
 - i. If $\int_0^\infty f(x) dx$ and $\lim_{x\to\infty} f(x)$ both exists, then $\lim_{x\to\infty} f(x) = 0$
- ii. If $\int_0^\infty f(x) dx$ exists, then $\lim_{x\to\infty} f(x)$ exists.

Solution.

i. The statement is true. Suppose not. Then $\lim_{x\to\infty} f(x) \neq 0$. WLOG suppose $\lim_{x\to\infty} f(x) = \epsilon > 0$ (since $\lim_{x\to\infty} f(x)$ exists). Then $f(x) > \epsilon/2$ for $x \ge M$. Hence it follows that for all $n \in \mathbb{N}$, we have

$$\int_{M}^{M+n} f(x)dx \ge \int_{M}^{M+n} \frac{\epsilon}{2} dx = n\frac{\epsilon}{2}$$

It follows we have for all $n \in \mathbb{N}$ that

$$\int_{0}^{M+n} f(x)dx = \int_{0}^{M} f(x)dx + \int_{M}^{M+n} f(x)dx \ge \int_{0}^{M} f(x)dx + n\frac{\epsilon}{2}$$

This implies that $\lim_{n \to 0} \int_{0}^{M+n} f(x) dx = \infty$ as $\lim n\epsilon/2 = \infty$. It follows from the sequential criteria that $\int_{0}^{\infty} f(x) dx = \infty$, which is a contradiction.

ii. The statement is false. Consider $f(x) = 1/(x+1)^2$ for $x \ge 0$. Note that f is continuous on [0, b] for all $b \in (0, \infty)$. It follows from FTC that $\int_0^b f(x)dx = -1/(x+1)]_0^b = 1 - 1/b$. By taking limits, we have $\int_0^\infty f(x)dx = \lim_{b\to\infty} \int_0^b f(x)dx = 1$. Now we consider another function g such that g(x) = f(x) for all $x \ge 0$ and $x \notin \mathbb{N}$ and g(n) = 1 for $n \in \mathbb{N}$.

Now we consider another function g such that g(x) = f(x) for all $x \ge 0$ and $x \notin \mathbb{N}$ and g(n) = 1 for $n \in \mathbb{N}$. Note that for all b > 0, g = f except for finitely many points on [0, b]. Hence, we have $\int_0^b g = \int_0^b f$. It follows by taking limits that $\int_0^\infty g = \lim_{b\to\infty} \int_0^b f = \int_0^\infty f = 1$, that is, $\int_0^\infty g(x)dx$ exists. However $\lim_{x\to\infty} f(x)$ does not exists since $g(x_n) \to 1$ where $x_n := n$ but $g(x_n + 1/2) = f(x_n + 1/2) = 1/(n + 1/2)^2 \to 0$. **Remark**.

- All of you correctly identified the truth of the statements. Well done!
- Many of you considered f in part (ii) to be the zero function, which is clearly Okay and simpler than the above solution. Meanwhile, a number of you considered functions with "hats" of diminishing width, which is also OK.
- Some of you confused the definition of improper integrals with the ordinary integral: ordinary integrals could be verified by an ϵ argument concerning upper and lower sum of partitions. However the case for improper integrals is not (as we may not be able to define upper/lower sums if functions or domains are unbounded). The latter is *defined* as the limit of ordinary integrals on compact intervals. In particular, theorems that are true for the ordinary integral may not be valid for improper integrals; one has to give some verification before using similar theorems, like the Lebesgue criteria.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be a bounded function. Write $M := \sup_{x \in \mathbb{R}} |f(x)|$. For all $\lambda > 0$, we define

$$\psi_{\lambda}(x) := \inf\{g(x) : g \text{ is a } \lambda\text{-Lipschitz function on } \mathbb{R} \text{ and } g \ge f \text{ on } \mathbb{R}\}$$

for all $x \in \mathbb{R}$. Write $\psi_0(x) := M$ for all $x \in \mathbb{R}$.

Suppose for all t > 0, there exists $\lambda > 0$ such that $\psi_{\lambda}(x) - f(x) < t$ for all $x \in \mathbb{R}$. With the assumption, we define for all t > 0 that

$$\tau(t) := \inf\{\lambda > 0 : \psi_{\lambda}(x) - f(x) < t \text{ for all } x \in \mathbb{R}\}\$$

We also define

$$\phi(x) := \int_0^1 \psi_{\tau(t)}(x) dt \tag{1}$$

for all $x \in \mathbb{R}$

- i. Show that for all $\lambda > 0$ that ψ_{λ} is a λ -Lipschitz function on \mathbb{R} .
- ii. Show that the impropert integral in Eq(1) exists for all $x \in \mathbb{R}$, that is, the function $t \in [c, 1] \mapsto \psi_{\tau(t)}(x)$ is Riemann integrable for all $c \in (0, 1]$ and $\lim_{c \to 0^+} \int_c^1 \psi_{\tau(t)}(x) dt$ exists.
- iii. Show that the function ϕ is bounded and uniformly continuous on \mathbb{R} .

Solution.

i. Fix $\lambda > 0$. Fix we show that $\psi_{\lambda}(x)$ is well-defined for all $x \in \mathbb{R}$. Set g(x) := M for all $x \in \mathbb{R}$. Then it is clear that g is λ - Lipschitz for all $\lambda > 0$ since it is a constant function. It is also clear that $g \ge f$ on \mathbb{R} . Therefore, $\psi_{\lambda}(x)$ is finite for all $x \in \mathbb{R}$.

Next, we show that ψ_{λ} is λ -Lipschitz. Let $x, y \in \mathbb{R}$. Let $\epsilon > 0$. Then there exists $g, h \lambda$ -Lipschitz functions such that $\psi_{\lambda}(x) + \epsilon > g(x)$ and $\psi_{\lambda}(y) + \epsilon > h(y)$ by the definition of ψ_{λ} . Hence, we have

$$\begin{split} \psi_{\lambda}(y) - \psi_{\lambda}(x) - \epsilon &\leq \psi_{\lambda}(y) - g(x) \leq g(x) - g(y) \leq \lambda |x - y| \\ \psi_{\lambda}(x) - \psi_{\lambda}(y) - \epsilon &\leq \psi_{\lambda}(x) - h(y) \leq h(x) - h(y) \leq \lambda |x - y| \end{split}$$

Combining the two, we have $|\psi_{\lambda}(x) - \psi_{\lambda}(y)| - \epsilon \leq \lambda |x - y|$. The result follows as $\epsilon \to 0$.

ii. Fix $x \in \mathbb{R}$. Write $\alpha_x(t) := \psi_{\tau(t)}(x)$ for t > 0.

Claim. We have $\alpha_x(t)$ is increasing for t > 0

Proof of claim. To begin with, we show that τ is decreasing on $(0, \infty)$. Suppose $t_1 \leq t_2 \in (0, 1)$. Then we have

$$\{\lambda > 0 : \psi_{\lambda}(x) - f(x) < t_1 \text{ for all } x \in \mathbb{R}\} \subset \{\lambda > 0 : \psi_{\lambda}(x) - f(x) < t_2 \text{ for all } x \in \mathbb{R}\}$$

It follows clearly that $\tau(t_2) \leq \tau(t_1)$ by taking infimums. Next, we show that $\psi_{\lambda}(x)$ is decreasing for $\lambda \geq 0$. This is because if $0 < \lambda_1 \leq \lambda_2$ then we have

> $\{g(x): g \text{ is a } \lambda_1\text{-}Lipschitz \text{ function on } \mathbb{R} \text{ and } g \ge f \text{ on } \mathbb{R}\}\$ $\subset \{g(x): g \text{ is a } \lambda_2\text{-}Lipschitz \text{ function on } \mathbb{R} \text{ and } g \ge f \text{ on } \mathbb{R}\}$

By taking infimums, we have $\psi_{\lambda_2}(x) \leq \psi_{\lambda_1}(x)$. The case where $\lambda_1 = 0$ is obvious using the definition of ψ_0 . Combining the two, we have that $\alpha_x(t) := \psi_{\tau(t)}(x)$ is increasing for t > 0.

By the claim, α_x is increasing on (0, 1]. In particular, it is increasing on [c, 1] for all $c \in (0, 1)$. Hence $\alpha_x \in \mathcal{R}([c, 1])$ as monotone functions over compact intervals are Riemann integrable. Next, we give a bound for α :

Claim. We have $|\alpha_x(t)| \leq M$ for all t > 0.

Proof of claim. Fix $\lambda \geq 0$. Note that $\psi_{\lambda}(x) \geq f(x) \geq -M$ by the definition of ψ_{λ} . In addition, we have shown in the proof of the preivous claim that $\psi_{\lambda}(x) \leq \psi_0(x) = M$ (since the constant function $g \equiv M$ on \mathbb{R} is λ -Lipschitz for all $\lambda > 0$ with $g \geq f$ on \mathbb{R}). It follows that $|\psi_{\lambda}(x)| \leq M$ for all $\lambda \geq 0$. Hence, we clearly have $|\alpha_x(t)| \leq M$ on t > 0

To show that $\lim_{c\to 0^+} \int_c^1 \alpha_x(t)dt$ exists. We consider $\overline{\alpha}_x(t) := \alpha_x(t) + M \ge 0$ for all t > 0. Note that $\overline{\alpha}_x(t)$ is non-negative and increasing on (0, 1]. Define $F_x(c) := \int_c^1 \overline{\alpha}_x(t)dt$ for all c > 0. It follows that F_x is decreasing for $c \in (0, 1]$ by splitting the domain of integration. Furthermore, $0 \le F_x(c) \le \int_c^1 |\overline{\alpha}_x(t)|dt \le 2M$ for all $c \in (0, 1]$. It follows from the bounded monotone theorem that $\lim_{c\to 0^+} F_x(c)$ exists. In particular, by linearity of integrals and limits, $\lim_{c\to 0^+} \int_c^1 \alpha_x(t)dt$ exists.

iii. First we show that ϕ is bounded. Fix $x \in \mathbb{R}$. Using the notations in part (ii), we have $\phi(x) = \lim_{c \to 0^+} F_x(c)$. As $0 \leq F_x(c) \leq 2M$ for all $c \in (0, 1]$, we have $0 \leq \phi(x) \leq 2M$. The result follows as x is arbitrary. Next we show the uniform continuity. Let $\epsilon > 0$. Let $x, y \in \mathbb{R}$. Pick $c \in (0, \epsilon)$ such that

$$|\phi(x) - F_c(x)|, |\phi(y) - F_c(y)| \le \epsilon$$

Then, note that

$$\begin{aligned} F_{c}(x) - F_{c}(y) &|= \left| \int_{c}^{1} \psi_{\tau(t)}(x) - \psi_{\tau(t)}(y) dt \right| \leq \int_{c}^{1} \left| \psi_{\tau(t)}(x) - \psi_{\tau(t)}(y) \right| dt \\ &= \int_{c}^{\epsilon} \left| \psi_{\tau(t)}(x) - \psi_{\tau(t)}(y) \right| dt + \int_{\epsilon}^{1} \left| \psi_{\tau(t)}(x) - \psi_{\tau(t)}(y) \right| dt \\ &\leq \int_{c}^{\epsilon} \left| \alpha_{x} \right| (t) + \left| \alpha_{y} \right| (t) dt + \int_{\epsilon}^{1} \tau(t) |x - y| dt \\ &\leq 2M\epsilon + \int_{\epsilon}^{1} \tau(\epsilon) dt |x - y| \\ &\leq 2M\epsilon + \tau(\epsilon) |x - y| \end{aligned}$$

Choose $\delta := \min\{1, \epsilon/\tau(\epsilon)\}$ (we set $\epsilon/0 := \infty$ if necessary). Then it follows that $|F_c(x) - F_c(y)| \le (2M+1)\epsilon$ as $|x - y| \le \delta$. By triangle inequalities, we further have $|\phi(x) - \phi(y)| \le (2M+3)\epsilon$ when $|x - y| \le \epsilon$. It follows that ϕ is uniform continuous on \mathbb{R} .