In the following, unless otherwise specificed, if $f: A \rightarrow \mathbb{R}$ is a bounded function on $A \subset \mathbb{R}$, then we denote $\|f\|_{\infty}:=\sup \{|f(x)|: x \in A\}$.

1. Define $f_{n}(x):=\frac{x^{n}}{\left(1+x^{n}\right)}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Find the pointwise limit of $\left(f_{n}\right)$ for $x \geq 0$.

Solution. Fix $x \geq 0$. Suppose $x=0$. Then $f_{n}(0)=0$ for all $n \in \mathbb{N}$. Therefore $f_{n}(0) \rightarrow 0$. Suppose $1>x>0$. Then $\lim _{n} x^{n}=0$. It follows that $\lim _{n} f_{n}(x)=0$. Suppose $x>1$. Then $0<x^{-1}<1$. Note that $f_{n}(x)=\frac{x^{n}}{1+x^{n}}=\frac{1}{x^{-n}+1}$ for all $n \in \mathbb{N}$. It follows that $\lim _{n} f_{n}(x)=\frac{1}{0+1}=1$. Suppose $x=1$. Then $f_{n}(x)=1 / 2$ for all $n \in \mathbb{N}$. It follows that $\lim _{n} f_{n}(1)=1 / 2$. Hence, define $f(x):=\left\{\begin{array}{ll}0 & x \in[0,1) \\ 1 / 2 & x=1 \\ 1 & x>1\end{array}\right.$. It follows that $f_{n}(x) \rightarrow f(x)$ pointwise on $x \geq 0$.
2. Consider $\left(f_{n}\right)$ to be the sequence of functions defined in Question 1. Let $b \in(0,1)$.
i. Show that f_{n} converges uniformly on $[0, b]$
ii. Show that f_{n} does not converge uniformly on $[0,1]$

Solution.

i. We claim that $f_{n} \rightarrow 0$ on $[0, b]$ uniformly for all $b \in(0,1)$. Fix $b \in(0,1)$. Note that we have

$$
0 \leq f_{n}(x)=\frac{x^{n}}{1+x^{n}} \leq \frac{b^{n}}{1}=b^{n}
$$

for all $x \in[0, b)$ and $n \in \mathbb{N}$. It follows that we have $\sup _{x \in[0, b]}\left|f_{n}(x)-0\right| \leq b^{n}$. Note that $\lim b^{n}=0$ as $b \in(0,1)$. By squeeze theorem, we have $\lim _{n} \sup _{x \in[0, b]}\left|f_{n}(x)-0\right|=0$. This shows that $f_{n} \rightarrow 0$ uniformly on $[0, b]$.
ii. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x):=0$ for all $x \neq 1$ and $f(1):=1 / 2$. By Question $1, f_{n} \rightarrow f$ pointwise on $[0,1]$. It suffices to show that f_{n} does not converge to f uniformly on $[0,1]$. Note that for all $n \in \mathbb{N}$ take $x_{n}:=1-1 / n \in[0,1]$. Then we have

$$
f_{n}\left(x_{n}\right)=\frac{x_{n}^{n}}{1+x_{n}^{n}} \geq \frac{x_{n}^{n}}{1+1}=\frac{1}{2}\left(1-\frac{1}{n}\right)^{n}
$$

Therefore, we have $\underline{\lim } f_{n}\left(x_{n}\right) \geq e^{-1} / 2$ (note that $\left.e^{-1}=\lim _{n}(1-1 / n)^{n}\right)$. Note that we have that $\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \geq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|=f_{n}\left(x_{n}\right)$. It follows that we have the approximation that $\underline{\lim } \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \geq e^{-1} / 2$. This implies that $\underline{\lim } \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|>0$ and so f_{n} does not converge to f uniformly on $[0,1]$.
$\boldsymbol{R e m a r k}$. In addition to picking $x_{n}:=1-1 / n$, one can pick $x_{n}:=(1 / 2)^{1 / n}$. It is also valid to pick $\left(x_{n}\right)$ by considering $\lim _{x \rightarrow 1^{-}} f_{n}(x)=\frac{1}{2}$; we can take x_{n} such that $f_{n}\left(x_{n}\right)>1 / 4$ from the limit. One can even pick x_{n} with $f_{n}\left(x_{n}\right)=1 / 4$ by the intermediate value theorem using continuity of f_{n}.
3. Define $f_{n}(x):=x+\frac{1}{n}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$; define also $f(x):=x$ for all $x \in \mathbb{R}$.
i. Show that $f_{n} \rightarrow f$ uniformly on \mathbb{R}.
ii. Show that the sequence $\left(f_{n}^{2}\right)$ does not converge uniformly on \mathbb{R}.

Solution.

i. Note that $f_{n}(x)-f(x)=\frac{1}{n}$ for all $x \in \mathbb{R}$. It follows that $\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|=\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence, $f_{n} \rightarrow f$ uniformly on \mathbb{R}.
ii. Note that $f_{n}(x)=\left(x+\frac{1}{n}\right)^{2}=x^{2}+\frac{2 x}{n}+\frac{1}{n^{2}}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Note that $f_{n}^{2}(x) \rightarrow f^{2}(x)$ pointwise as $f_{n}(x) \rightarrow f(x)$ pointwise. It sufficies to show that $\left(f_{n}^{2}\right)$ does not converge to f^{2} uniformly on \mathbb{R}. Let $n \in \mathbb{N}$. Define $x_{n}:=n$. It follows that $f_{n}^{2}\left(x_{n}\right)-f^{2}\left(x_{n}\right)=\frac{2 x_{n}}{n}+\frac{1}{n^{2}}=2+\frac{1}{n^{2}}$. It follows that

$$
\sup _{x \in \mathbb{R}}\left|f_{n}^{2}(x)-f^{2}(x)\right| \geq\left|f_{n}^{2}\left(x_{n}\right)-f^{2}\left(x_{n}\right)\right|=\left|2+\frac{1}{n^{2}}\right| \geq 2
$$

It follows that $\underline{\lim } \sup _{x \in \mathbb{R}}\left|f_{n}^{2}(x)-f^{2}(x)\right| \geq 2>0$ and so f_{n}^{2} does not converge to f^{2} uniformly.
4. Let $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be sequences of bounded functions on a subset $A \subset \mathbb{R}$. Suppose $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly on A where $f, g: A \rightarrow \mathbb{R}$ are functions. Show that $\left(f_{n} g_{n}\right)$ converges uniformly to $f g$ on A.
Solution. First we proceed with the following claim
Claim. Suppose $\left(f_{n}\right)$ is a sequence of bounded functions such that $f_{n} \rightarrow f$ uniformly on A. Then $\sup _{n}\left\|f_{n}\right\|_{\infty}<$ ∞ and $\|f\|_{\infty}<\infty$.
Proof of claim. First we show that $\|f\|_{\infty}<\infty$. Fix $t \in A$. Note that there exists $N \in \mathbb{N}$ such that

$$
\left|f_{n}(x)-f(x)\right| \leq 1
$$

for all $x \in A$ and $n \geq N$. Hence, we have $|f(t)| \leq 1+\left|f_{N}(t)\right| \leq 1+\left\|f_{N}\right\|_{\infty}$ for all $t \in A$. This implies that $\|f\|_{\infty} \leq 1+\left\|f_{N}\right\|_{\infty}$ by taking supremums.
Next, we show that $\sup _{n}\left\|f_{n}\right\|_{\infty}<\infty$. Note that from the above we have for all $n \geq N$ and $t \in A$ that $\left|f_{n}(t)\right| \leq 1+|f(t)| \leq 1+\|f\|_{\infty}$. It follows that $\left\|f_{n}\right\|_{\infty} \leq 1+\|f\|_{\infty}$ for all $n \geq N$.
Finally, take $M:=\max \left\{\left\|f_{1}\right\|_{\infty}, \cdots,\left\|f_{N}\right\|_{\infty}, 1+\|f\|_{\infty}\right\}$. It clearly follows that $\left\|f_{n}\right\|_{\infty} \leq M$ for all $n \in \mathbb{N}$. Hence, we have $\sup _{n}\left\|f_{n}\right\|_{\infty}<\infty$

Now we proceed to the statement in question with the help of the claim. Let $x \in A$. It follows that we have

$$
\begin{aligned}
\left|f_{n} g_{n}(x)-f g(x)\right| & \leq\left|f _ { n } (x) \left\|g_{n}(x)-g(x)\left|+\left|g(x) \| f_{n}(x)-f(x)\right|\right.\right.\right. \\
& \leq\left\|f_{n}\right\|_{\infty}\left\|g_{n}-g\right\|_{\infty}+\|g\|_{\infty}\left\|f_{n}-f\right\|_{\infty} \\
& \leq \sup _{n}\left\|f_{n}\right\|\left\|g_{n}-g\right\|_{\infty}+\|g\|_{\infty}\left\|f_{n}-f\right\|_{\infty}
\end{aligned}
$$

in which the supremums in the third line is well-defined because of the claim. Hence, we have by taking supremum for $x \in A$ that

$$
\left\|f_{n} g_{n}-f g\right\|_{\infty} \leq \sup _{n}\left\|f_{n}\right\|\left\|g_{n}-g\right\|_{\infty}+\|g\|_{\infty}\left\|f_{n}-f\right\|_{\infty}
$$

Note that $\left\|g_{n}-g\right\|_{\infty} \rightarrow 0$ and $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ as $g_{n} \rightarrow g$ and $f_{n} \rightarrow f$ uniformly. It follows from the squeeze theorem that $\left\|f_{n} g_{n}-f g\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Common Mistake. Proving $\sup _{n}\left\|f_{n}\right\|_{\infty},\|f\|_{\infty},\|g\|_{\infty}<\infty$ is crucial for this question. In general, a sequence of bounded functions may not be uniformly bounded; the point-wise limit may not be bounded if the convergence is not uniform.

