MATH 2068 HW 6 - Solutions Posted on 31 March 2022

in(1
1 (P. 215 Q12). Let g(z) := {(S)m( /x) @ g for all z € [0,1]. Show that g € R([0,1])
xTr =
Solution. First, note g € R([t,1]) for all ¢ > 0 as g is continuous on [¢,1] for all ¢ > 0. Now we prove the
assertion by definition. Let 1 > € > 0. Since g € R([e, 1]), there exists a partition P such that U(f, P) —
L(f, P) < e. Now consider @ := {0} UP C [0,1] =: {x;} 4, which is a partition of [0, 1]. Then we have

U(g,Q) - L(g, Q) = Y _ diam g([xs, x5 1)) (wi — ;1) = diam(g([0, e]))e + U(g, P) — L(g, P) < 2 + € < 3¢

i=1
as diam(g([0, €)]) = sup, yep.¢ 19(z) — g(y)| < 2. It follows from definitions that g € R([0, 1]).

Common Mistake. A number of you has argued as follows: fix ¢ > 0. Since g is continuous on [, 1],
it remains to show that ¢ € R([0,€]). The latter is true because for any partition P C [0,€], we have

This argument is NOT correct. To show g € R([0, €]) you should instead show that for all § > 0, there exists
P C [0, €] such that U(g, P) — L(g, P) < 6. In the previous argument, € has been fixed so you should consider
some other arbitrarily defined variables.

2 (P. 215 Q18). Let f : [a,b] — R be continuous. Define M,, := (f: fM)Y/™. Suppose f > 0 on [a,b]. Show
that lim M,, = sup{f(z) : = € [a,b]}.

Solution. Write || f||, := sup{f(x) : « € [a,b]}. Note that the assertion is clear if || f||,, = 0 (which implies
f=0on [a,b] constantly.

Next we consider the case where || f||, = 1. The strategy is to find some lower and upper bounds for (M, ) so
that the sandwich theorem can be used. We would be showing the following claim:

Claim. For all € > 0 there exists ¢ < d € R such that [¢,d] C [a,b] and
1—e)(d—e)'/" <M, < (b—a)'/™

Proof of claim. Note that we have f” < 1 pointwise for all n € N. Therefore, f: fn < f:l =b—a for
all n € N. Hence, M,, < (b—a)'/" for all n € N. For the lower bound, we fix ¢ > 0. Note that by the
extreme value theorem, f(t) = 1 = ||f]|, for some t € [0,1]. By continuity at ¢, we conclude that there
exists an non-empty interval I C [0, 1] such that f > 1 — € on I. In particular, we can choose some smaller
compact intervals [¢,d] C I. Then f > 1 — € on [¢,d]. Tt follows from the non-negativity of f that we have

fab > fcd > fcd(l — )" = (1 —¢)(d — c). It follows that we have (1 —¢)(d — ¢)'/™ < M, for all n € N.
Hence the claim is proved.

To finish the case for || f||,, = 1, we fix € > 0. Then by considering n — oo for the inequality in the claim,
we have
1—e=(1-¢)liminf(d — c)l/" < liminf M,, < limsup M,, < limsup(b— a)l/" =1

As ¢ > 0 is arbitrary, it follows that we have 1 < liminf M,, < limsupM,, < 1 as ¢ — 0. Hence, we have
limM, =1=|f|.-

Finally, for the general case where || f[|., # 0. We can define g := f/|f||.,- Then it follows that |g|/,, = 1.

Hence, by the previous case, we have limn(f: g")l/" = 1. Note that

b b
nyl/n _ fn /n _ 1
(o= T T

for all n € N. It follows that lim,, M,, = || |-

Common Mistake. Surprisingly, many of you did the question with the correct idea. Keep it up! Nonethe-
less, only a few of you have correctly used lim inf and limsup to conclude lim M,, = || f||.. Note that we have
to take first n — oo and € — 0 for the question. In addition, the sandwich theorem cannot be applied since
the limit of the upper and lower bounds are not equal when n — oc.
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3 (P. 225 Q21). Let f,g € R([a,b]).

(a). Let t € R. Show that [ (tf + g)2 > 0.
(b). Using (a), show that

2

b 1 b
gt/ f2+;/ s

b
/fg
forallt >0

(c). Suppose fab f2 = 0. Show that ff fg=0

(d). Prove the Cauchy-Bunyakovsky-Schwarz Inequality (or simply Schwarz Inequality):
b |2 b b b
[ ral <[t <[ [ )

(a). Note that (tf & g)? > 0 point-wise. It follows from monotonicity of integrals that fab(tf +g)% > f; 0=0
for all t € R

Solution.

(b). Fix t > 0. Note that from part (a), we have

os/ab(tfig)Q:tQLbf2i2t[lbfg+/ab92
i2/abfg<t/abf2+1/abg2

since ¢t > 0. Hence we have )2 fab fg‘ < tf: fA+1 fang.

It follows that we have

(c). Suppose f; %2 = 0. It follows that we have
2

b 1b2
/fgég/g

for all t > 0. By t — oo, it follows that we have ’f; fg‘ =0 and so f; fg=0.

(d). Note that we always have

f; f g’ < f; |fg| by triangle inequality. Hence the first inequality follows by
taking squares. For the second inequality, first we suppose f: f? # 0. Note that by part (a), for all t € R,

we have . . .
F<t>:=t2/ f2+2t/ Ifg|+/9220

Note that F': R — R is a quadratic polynomial with positive leading coefficient. Since F' > 0 everywhere,
it never has distinct roots. Therefore by elementary algebra, we have A < 0 where A is the discriminant

of F. It follows that , , ,
a([ Ao - ac[ [ <o

which implies the second inequality. Now suppose instead f: f? =0. Then f; \f|2 = 0. By part (c), it
follows that f; [fllgl = f; |fg| = 0. Hence, the second inequality is also satisfied in this case.

Common Mistake. A number of you cannot do part (d), which is quite tricky in my opinion. Moreover

many of you missed the case where f( Ib f? = 0. In addition to the discriminant method above, other methods
include:

e Take t = (j;ng/f(ff'Q)l/Q ort= (fab|f9‘)/fubf2

e Take t = 1 and proceed as the proof of Tutorial 3 P.2 Q3, that is, by taking ¢t = 1, we have f{f [fg] <
%jf 2+ %/ab g>. Then we first consider the case where ]f f? = /ab g% = 1. Next, we consider in the

general case that f/:= f/(f; Y2 and ¢ := g/(fab g%)'/2. This is a so-called normalization argument.



