1 (P. 215 Q12). Let $g(x):=\left\{\begin{array}{ll}\sin (1 / x) & x \neq 0 \\ 0 & x=0\end{array}\right.$ for all $x \in[0,1]$. Show that $g \in \mathcal{R}([0,1])$
Solution. First, note $g \in \mathcal{R}([t, 1])$ for all $t>0$ as g is continuous on $[t, 1]$ for all $t>0$. Now we prove the assertion by definition. Let $1>\epsilon>0$. Since $g \in \mathcal{R}([\epsilon, 1])$, there exists a partition P such that $U(f, P)-$ $L(f, P)<\epsilon$. Now consider $Q:=\{0\} \cup P \subset[0,1]=:\left\{x_{i}\right\}_{i=1}^{n}$, which is a partition of $[0,1]$. Then we have

$$
U(g, Q)-L(g, Q)=\sum_{i=1}^{n} \operatorname{diam} g\left(\left[x_{i}, x_{i-1}\right]\right)\left(x_{i}-x_{i-1}\right)=\operatorname{diam}(g([0, \epsilon])) \epsilon+U(g, P)-L(g, P) \leq 2 \epsilon+\epsilon<3 \epsilon
$$

as $\operatorname{diam}(g([0, \epsilon)])=\sup _{x, y \in[0 . \epsilon]}|g(x)-g(y)| \leq 2$. It follows from definitions that $g \in \mathcal{R}([0,1])$.
Common Mistake. A number of you has argued as follows: fix $\epsilon>0$. Since g is continuous on $[\epsilon, 1]$, it remains to show that $g \in \mathcal{R}([0, \epsilon])$. The latter is true because for any partition $P \subset[0, \epsilon]$, we have $U(g, P)-L(g, P) \leq 2 \epsilon$.

This argument is NOT correct. To show $g \in \mathcal{R}([0, \epsilon])$ you should instead show that for all $\delta>0$, there exists $P \subset[0, \epsilon]$ such that $U(g, P)-L(g, P)<\delta$. In the previous argument, ϵ has been fixed so you should consider some other arbitrarily defined variables.

2 (P. 215 Q18). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Define $M_{n}:=\left(\int_{a}^{b} f^{n}\right)^{1 / n}$. Suppose $f \geq 0$ on $[a, b]$. Show that $\lim M_{n}=\sup \{f(x): x \in[a, b]\}$.
Solution. Write $\|f\|_{\infty}:=\sup \{f(x): x \in[a, b]\}$. Note that the assertion is clear if $\|f\|_{\infty}=0$ (which implies $f \equiv 0$ on $[a, b]$ constantly.
Next we consider the case where $\|f\|_{\infty}=1$. The strategy is to find some lower and upper bounds for $\left(M_{n}\right)$ so that the sandwich theorem can be used. We would be showing the following claim:
Claim. For all $\epsilon>0$ there exists $c<d \in \mathbb{R}$ such that $[c, d] \subset[a, b]$ and

$$
(1-\epsilon)(d-c)^{1 / n} \leq M_{n} \leq(b-a)^{1 / n}
$$

Proof of claim. Note that we have $f^{n} \leq 1$ pointwise for all $n \in \mathbb{N}$. Therefore, $\int_{a}^{b} f_{n} \leq \int_{a}^{b} 1=b-a$ for all $n \in \mathbb{N}$. Hence, $M_{n} \leq(b-a)^{1 / n}$ for all $n \in \mathbb{N}$. For the lower bound, we fix $\epsilon>0$. Note that by the extreme value theorem, $f(t)=1=\|f\|_{\infty}$ for some $t \in[0,1]$. By continuity at t, we conclude that there exists an non-empty interval $I \subset[0,1]$ such that $f>1-\epsilon$ on I. In particular, we can choose some smaller compact intervals $[c, d] \subset I$. Then $f>1-\epsilon$ on $[c, d]$. It follows from the non-negativity of f that we have $\int_{a}^{b} f^{n} \geq \int_{c}^{d} f^{n} \geq \int_{c}^{d}(1-\epsilon)^{n}=(1-\epsilon)(d-c)$. It follows that we have $(1-\epsilon)(d-c)^{1 / n} \leq M_{n}$ for all $n \in \mathbb{N}$. Hence the claim is proved.

To finish the case for $\|f\|_{\infty}=1$, we fix $\epsilon>0$. Then by considering $n \rightarrow \infty$ for the inequality in the claim, we have

$$
1-\epsilon=(1-\epsilon) \liminf (d-c)^{1 / n} \leq \liminf M_{n} \leq \lim \sup M_{n} \leq \limsup (b-a)^{1 / n}=1
$$

As $\epsilon>0$ is arbitrary, it follows that we have $1 \leq \liminf M_{n} \leq \lim \sup M_{n} \leq 1$ as $\epsilon \rightarrow 0$. Hence, we have $\lim M_{n}=1=\|f\|_{\infty}$.
Finally, for the general case where $\|f\|_{\infty} \neq 0$. We can define $g:=f /\|f\|_{\infty}$. Then it follows that $\|g\|_{\infty}=1$. Hence, by the previous case, we have $\lim _{n}\left(\int_{a}^{b} g^{n}\right)^{1 / n}=1$. Note that

$$
\left(\int_{a}^{b} g^{n}\right)^{1 / n}=\left(\int_{a}^{b} \frac{f^{n}}{\|f\|_{\infty}^{n}}\right)^{1 / n}=\frac{1}{\|f\|_{\infty}} M_{n}
$$

for all $n \in \mathbb{N}$. It follows that $\lim _{n} M_{n}=\|f\|_{\infty}$.
Common Mistake. Surprisingly, many of you did the question with the correct idea. Keep it up! Nonetheless, only a few of you have correctly used $\lim \inf$ and $\lim \sup$ to conclude $\lim M_{n}=\|f\|_{\infty}$. Note that we have to take first $n \rightarrow \infty$ and $\epsilon \rightarrow 0$ for the question. In addition, the sandwich theorem cannot be applied since the limit of the upper and lower bounds are not equal when $n \rightarrow \infty$.

3 (P. 225 Q21). Let $f, g \in \mathcal{R}([a, b])$.
(a). Let $t \in \mathbb{R}$. Show that $\int_{a}^{b}(t f \pm g)^{2} \geq 0$.
(b). Using (a), show that

$$
2\left|\int_{a}^{b} f g\right| \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}
$$

for all $t>0$
(c). Suppose $\int_{a}^{b} f^{2}=0$. Show that $\int_{a}^{b} f g=0$
(d). Prove the Cauchy-Bunyakovsky-Schwarz Inequality (or simply Schwarz Inequality):

$$
\left|\int_{a}^{b} f g\right|^{2} \leq\left(\int_{a}^{b}|f g|\right)^{2} \leq\left(\int_{a}^{b} f^{2}\right)\left(\int_{a}^{b} g^{2}\right)
$$

Solution.

(a). Note that $(t f \pm g)^{2} \geq 0$ point-wise. It follows from monotonicity of integrals that $\int_{a}^{b}(t f \pm g)^{2} \geq \int_{a}^{b} 0=0$ for all $t \in \mathbb{R}$
(b). Fix $t>0$. Note that from part (a), we have

$$
0 \leq \int_{a}^{b}(t f \pm g)^{2}=t^{2} \int_{a}^{b} f^{2} \pm 2 t \int_{a}^{b} f g+\int_{a}^{b} g^{2}
$$

It follows that we have

$$
\pm 2 \int_{a}^{b} f g \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}
$$

since $t>0$. Hence we have $\left|2 \int_{a}^{b} f g\right| \leq t \int_{a}^{b} f^{2}+\frac{1}{t} \int_{a}^{b} g^{2}$.
(c). Suppose $\int_{a}^{b} f^{2}=0$. It follows that we have

$$
2\left|\int_{a}^{b} f g\right| \leq \frac{1}{t} \int_{a}^{b} g^{2}
$$

for all $t>0$. By $t \rightarrow \infty$, it follows that we have $\left|\int_{a}^{b} f g\right|=0$ and so $\int_{a}^{b} f g=0$.
(d). Note that we always have $\left|\int_{a}^{b} f g\right| \leq \int_{a}^{b}|f g|$ by triangle inequality. Hence the first inequality follows by taking squares. For the second inequality, first we suppose $\int_{a}^{b} f^{2} \neq 0$. Note that by part (a), for all $t \in \mathbb{R}$, we have

$$
F(t):=t^{2} \int_{a}^{b} f^{2}+2 t \int_{a}^{b}|f g|+\int_{a}^{b} g^{2} \geq 0
$$

Note that $F: \mathbb{R} \rightarrow \mathbb{R}$ is a quadratic polynomial with positive leading coefficient. Since $F \geq 0$ everywhere, it never has distinct roots. Therefore by elementary algebra, we have $\Delta \leq 0$ where Δ is the discriminant of F. It follows that

$$
4\left(\int_{a}^{b}|f g|\right)^{2}-4\left(\int_{a}^{b} f^{2}\right)\left(\int_{a}^{b} g^{2}\right) \leq 0
$$

which implies the second inequality. Now suppose instead $\int_{a}^{b} f^{2}=0$. Then $\int_{a}^{b}|f|^{2}=0$. By part (c), it follows that $\int_{a}^{b}|f||g|=\int_{a}^{b}|f g|=0$. Hence, the second inequality is also satisfied in this case.
Common Mistake. A number of you cannot do part (d), which is quite tricky in my opinion. Moreover many of you missed the case where $\int_{a}^{b} f^{2}=0$. In addition to the discriminant method above, other methods include:

- Take $t=\left(\int_{a}^{b} g^{2} / \int_{a}^{b} f^{2}\right)^{1 / 2}$ or $t=\left(\int_{a}^{b}|f g|\right) / \int_{a}^{b} f^{2}$
- Take $t=1$ and proceed as the proof of Tutorial 3 P. 2 Q3, that is, by taking $t=1$, we have $\int_{a}^{b}|f g| \leq$ $\frac{1}{2} \int_{a}^{b} f^{2}+\frac{1}{2} \int_{a}^{b} g^{2}$. Then we first consider the case where $\int_{a}^{b} f^{2}=\int_{a}^{b} g^{2}=1$. Next, we consider in the general case that $f^{\prime}:=f /\left(\int_{a}^{b} f^{2}\right)^{1 / 2}$ and $g^{\prime}:=g /\left(\int_{a}^{b} g^{2}\right)^{1 / 2}$. This is a so-called normalization argument.

