1 (P. 215 Q12). Let
$$g(x) := \begin{cases} \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 for all $x \in [0, 1]$. Show that $g \in \mathcal{R}([0, 1])$

Solution. First, note $g \in \mathcal{R}([t, 1])$ for all t > 0 as g is continuous on [t, 1] for all t > 0. Now we prove the assertion by definition. Let $1 > \epsilon > 0$. Since $g \in \mathcal{R}([\epsilon, 1])$, there exists a partition P such that $U(f, P) - L(f, P) < \epsilon$. Now consider $Q := \{0\} \cup P \subset [0, 1] =: \{x_i\}_{i=1}^n$, which is a partition of [0, 1]. Then we have

$$U(g,Q) - L(g,Q) = \sum_{i=1}^{n} \operatorname{diam} g([x_i, x_{i-1}])(x_i - x_{i-1}) = \operatorname{diam}(g([0,\epsilon]))\epsilon + U(g,P) - L(g,P) \le 2\epsilon + \epsilon < 3\epsilon$$

as diam $(g([0,\epsilon)]) = \sup_{x,y \in [0,\epsilon]} |g(x) - g(y)| \le 2$. It follows from definitions that $g \in \mathcal{R}([0,1])$.

Common Mistake. A number of you has argued as follows: fix $\epsilon > 0$. Since g is continuous on $[\epsilon, 1]$, it remains to show that $g \in \mathcal{R}([0, \epsilon])$. The latter is true because for any partition $P \subset [0, \epsilon]$, we have $U(g, P) - L(g, P) \leq 2\epsilon$.

This argument is NOT correct. To show $g \in \mathcal{R}([0, \epsilon])$ you should instead show that for all $\delta > 0$, there exists $P \subset [0, \epsilon]$ such that $U(g, P) - L(g, P) < \delta$. In the previous argument, ϵ has been fixed so you should consider some other arbitrarily defined variables.

2 (P. 215 Q18). Let $f : [a,b] \to \mathbb{R}$ be continuous. Define $M_n := (\int_a^b f^n)^{1/n}$. Suppose $f \ge 0$ on [a,b]. Show that $\lim M_n = \sup\{f(x) : x \in [a,b]\}$.

Solution. Write $||f||_{\infty} := \sup\{f(x) : x \in [a, b]\}$. Note that the assertion is clear if $||f||_{\infty} = 0$ (which implies $f \equiv 0$ on [a, b] constantly.

Next we consider the case where $||f||_{\infty} = 1$. The strategy is to find some lower and upper bounds for (M_n) so that the sandwich theorem can be used. We would be showing the following claim:

Claim. For all $\epsilon > 0$ there exists $c < d \in \mathbb{R}$ such that $[c, d] \subset [a, b]$ and

$$(1-\epsilon)(d-c)^{1/n} \le M_n \le (b-a)^{1/n}$$

Proof of claim. Note that we have $f^n \leq 1$ pointwise for all $n \in \mathbb{N}$. Therefore, $\int_a^b f_n \leq \int_a^b 1 = b - a$ for all $n \in \mathbb{N}$. Hence, $M_n \leq (b-a)^{1/n}$ for all $n \in \mathbb{N}$. For the lower bound, we fix $\epsilon > 0$. Note that by the extreme value theorem, $f(t) = 1 = ||f||_{\infty}$ for some $t \in [0,1]$. By continuity at t, we conclude that there exists an non-empty interval $I \subset [0,1]$ such that $f > 1 - \epsilon$ on I. In particular, we can choose some smaller compact intervals $[c,d] \subset I$. Then $f > 1 - \epsilon$ on [c,d]. It follows from the non-negativity of f that we have $\int_a^b f^n \geq \int_c^d f^n \geq \int_c^d (1-\epsilon)^n = (1-\epsilon)(d-c)$. It follows that we have $(1-\epsilon)(d-c)^{1/n} \leq M_n$ for all $n \in \mathbb{N}$. Hence the claim is proved.

To finish the case for $||f||_{\infty} = 1$, we fix $\epsilon > 0$. Then by considering $n \to \infty$ for the inequality in the claim, we have

 $1 - \epsilon = (1 - \epsilon) \liminf (d - c)^{1/n} \le \liminf M_n \le \limsup M_n \le \limsup (b - a)^{1/n} = 1$

As $\epsilon > 0$ is arbitrary, it follows that we have $1 \leq \liminf M_n \leq \limsup M_n \leq 1$ as $\epsilon \to 0$. Hence, we have $\lim M_n = 1 = \|f\|_{\infty}$.

Finally, for the general case where $||f||_{\infty} \neq 0$. We can define $g := f/||f||_{\infty}$. Then it follows that $||g||_{\infty} = 1$. Hence, by the previous case, we have $\lim_{n \to \infty} (\int_{a}^{b} g^{n})^{1/n} = 1$. Note that

$$(\int_{a}^{b} g^{n})^{1/n} = (\int_{a}^{b} \frac{f^{n}}{\|f\|_{\infty}^{n}})^{1/n} = \frac{1}{\|f\|_{\infty}} M_{n}$$

for all $n \in \mathbb{N}$. It follows that $\lim_n M_n = \|f\|_{\infty}$.

Common Mistake. Surprisingly, many of you did the question with the correct idea. Keep it up! Nonetheless, only a few of you have correctly used lim inf and lim sup to conclude $\lim M_n = ||f||_{\infty}$. Note that we have to take first $n \to \infty$ and $\epsilon \to 0$ for the question. In addition, the sandwich theorem cannot be applied since the limit of the upper and lower bounds are not equal when $n \to \infty$.

- **3** (P. 225 Q21). Let $f, g \in \mathcal{R}([a, b])$.
- (a). Let $t \in \mathbb{R}$. Show that $\int_a^b (tf \pm g)^2 \ge 0$.
- (b). Using (a), show that

$$2\left|\int_{a}^{b} fg\right| \le t \int_{a}^{b} f^{2} + \frac{1}{t} \int_{a}^{b} g^{2}$$

for all t > 0

- (c). Suppose $\int_a^b f^2 = 0$. Show that $\int_a^b fg = 0$
- (d). Prove the Cauchy-Bunyakovsky-Schwarz Inequality (or simply Schwarz Inequality):

$$\left| \int_{a}^{b} fg \right|^{2} \leq (\int_{a}^{b} |fg|)^{2} \leq (\int_{a}^{b} f^{2}) (\int_{a}^{b} g^{2})$$

Solution.

- (a). Note that $(tf \pm g)^2 \ge 0$ point-wise. It follows from monotonicity of integrals that $\int_a^b (tf \pm g)^2 \ge \int_a^b 0 = 0$ for all $t \in \mathbb{R}$
- (b). Fix t > 0. Note that from part (a), we have

$$0 \le \int_{a}^{b} (tf \pm g)^{2} = t^{2} \int_{a}^{b} f^{2} \pm 2t \int_{a}^{b} fg + \int_{a}^{b} g^{2}$$

It follows that we have

$$\pm 2\int_{a}^{b} fg \leq t\int_{a}^{b} f^{2} + \frac{1}{t}\int_{a}^{b} g^{2}$$

since t > 0. Hence we have $\left| 2 \int_a^b fg \right| \le t \int_a^b f^2 + \frac{1}{t} \int_a^b g^2$.

(c). Suppose $\int_a^b f^2 = 0$. It follows that we have

$$2\left|\int_{a}^{b} fg\right| \le \frac{1}{t} \int_{a}^{b} g^{2}$$

for all t > 0. By $t \to \infty$, it follows that we have $\left| \int_a^b fg \right| = 0$ and so $\int_a^b fg = 0$.

(d). Note that we always have $\left|\int_{a}^{b} fg\right| \leq \int_{a}^{b} |fg|$ by triangle inequality. Hence the first inequality follows by taking squares. For the second inequality, first we suppose $\int_{a}^{b} f^{2} \neq 0$. Note that by part (a), for all $t \in \mathbb{R}$, we have

$$F(t) := t^2 \int_a^b f^2 + 2t \int_a^b |fg| + \int_a^b g^2 \ge 0$$

Note that $F : \mathbb{R} \to \mathbb{R}$ is a quadratic polynomial with positive leading coefficient. Since $F \ge 0$ everywhere, it never has distinct roots. Therefore by elementary algebra, we have $\Delta \le 0$ where Δ is the discriminant of F. It follows that

$$4(\int_{a}^{b} |fg|)^{2} - 4(\int_{a}^{b} f^{2})(\int_{a}^{b} g^{2}) \le 0$$

which implies the second inequality. Now suppose instead $\int_a^b f^2 = 0$. Then $\int_a^b |f|^2 = 0$. By part (c), it follows that $\int_a^b |f||g| = \int_a^b |fg| = 0$. Hence, the second inequality is also satisfied in this case.

Common Mistake. A number of you cannot do part (d), which is quite tricky in my opinion. Moreover many of you missed the case where $\int_a^b f^2 = 0$. In addition to the discriminant method above, other methods include:

- Take $t = (\int_a^b g^2 / \int_a^b f^2)^{1/2}$ or $t = (\int_a^b |fg|) / \int_a^b f^2$
- Take t = 1 and proceed as the proof of Tutorial 3 P.2 Q3, that is, by taking t = 1, we have $\int_a^b |fg| \le \frac{1}{2} \int_a^b f^2 + \frac{1}{2} \int_a^b g^2$. Then we first consider the case where $\int_a^b f^2 = \int_a^b g^2 = 1$. Next, we consider in the general case that $f' := f/(\int_a^b f^2)^{1/2}$ and $g' := g/(\int_a^b g^2)^{1/2}$. This is a so-called normalization argument.