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1 (P. 215 Q12). Let g(x) :=

{
sin(1/x) x ̸= 0

0 x = 0
for all x ∈ [0, 1]. Show that g ∈ R([0, 1])

Solution. First, note g ∈ R([t, 1]) for all t > 0 as g is continuous on [t, 1] for all t > 0. Now we prove the
assertion by definition. Let 1 > ϵ > 0. Since g ∈ R([ϵ, 1]), there exists a partition P such that U(f, P ) −
L(f, P ) < ϵ. Now consider Q := {0} ∪ P ⊂ [0, 1] =: {xi}ni=1, which is a partition of [0, 1]. Then we have

U(g,Q)− L(g,Q) =

n∑
i=1

diam g([xi, xi−1])(xi − xi−1) = diam(g([0, ϵ]))ϵ+ U(g, P )− L(g, P ) ≤ 2ϵ+ ϵ < 3ϵ

as diam(g([0, ϵ)]) = supx,y∈[0.ϵ] |g(x)− g(y)| ≤ 2. It follows from definitions that g ∈ R([0, 1]).

Common Mistake. A number of you has argued as follows: fix ϵ > 0. Since g is continuous on [ϵ, 1],
it remains to show that g ∈ R([0, ϵ]). The latter is true because for any partition P ⊂ [0, ϵ], we have
U(g, P )− L(g, P ) ≤ 2ϵ.

This argument is NOT correct. To show g ∈ R([0, ϵ]) you should instead show that for all δ > 0, there exists
P ⊂ [0, ϵ] such that U(g, P )− L(g, P ) < δ. In the previous argument, ϵ has been fixed so you should consider
some other arbitrarily defined variables.

2 (P. 215 Q18). Let f : [a, b] → R be continuous. Define Mn := (
∫ b

a
fn)1/n. Suppose f ≥ 0 on [a, b]. Show

that limMn = sup{f(x) : x ∈ [a, b]}.

Solution. Write ∥f∥∞ := sup{f(x) : x ∈ [a, b]}. Note that the assertion is clear if ∥f∥∞ = 0 (which implies
f ≡ 0 on [a, b] constantly.
Next we consider the case where ∥f∥∞ = 1. The strategy is to find some lower and upper bounds for (Mn) so
that the sandwich theorem can be used. We would be showing the following claim:

Claim. For all ϵ > 0 there exists c < d ∈ R such that [c, d] ⊂ [a, b] and

(1− ϵ)(d− c)1/n ≤ Mn ≤ (b− a)1/n

Proof of claim. Note that we have fn ≤ 1 pointwise for all n ∈ N. Therefore,
∫ b

a
fn ≤

∫ b

a
1 = b − a for

all n ∈ N. Hence, Mn ≤ (b − a)1/n for all n ∈ N. For the lower bound, we fix ϵ > 0. Note that by the
extreme value theorem, f(t) = 1 = ∥f∥∞ for some t ∈ [0, 1]. By continuity at t, we conclude that there
exists an non-empty interval I ⊂ [0, 1] such that f > 1 − ϵ on I. In particular, we can choose some smaller
compact intervals [c, d] ⊂ I. Then f > 1 − ϵ on [c, d]. It follows from the non-negativity of f that we have∫ b

a
fn ≥

∫ d

c
fn ≥

∫ d

c
(1 − ϵ)n = (1 − ϵ)(d − c). It follows that we have (1 − ϵ)(d − c)1/n ≤ Mn for all n ∈ N.

Hence the claim is proved.

To finish the case for ∥f∥∞ = 1, we fix ϵ > 0. Then by considering n → ∞ for the inequality in the claim,
we have

1− ϵ = (1− ϵ) lim inf(d− c)1/n ≤ lim infMn ≤ lim supMn ≤ lim sup(b− a)1/n = 1

As ϵ > 0 is arbitrary, it follows that we have 1 ≤ lim infMn ≤ lim supMn ≤ 1 as ϵ → 0. Hence, we have
limMn = 1 = ∥f∥∞.

Finally, for the general case where ∥f∥∞ ̸= 0. We can define g := f/∥f∥∞. Then it follows that ∥g∥∞ = 1.

Hence, by the previous case, we have limn(
∫ b

a
gn)1/n = 1. Note that

(

∫ b

a

gn)1/n = (

∫ b

a

fn

∥f∥n∞
)1/n =

1

∥f∥∞
Mn

for all n ∈ N. It follows that limn Mn = ∥f∥∞.

Common Mistake. Surprisingly, many of you did the question with the correct idea. Keep it up! Nonethe-
less, only a few of you have correctly used lim inf and lim sup to conclude limMn = ∥f∥∞. Note that we have
to take first n → ∞ and ϵ → 0 for the question. In addition, the sandwich theorem cannot be applied since
the limit of the upper and lower bounds are not equal when n → ∞.
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3 (P. 225 Q21). Let f, g ∈ R([a, b]).

(a). Let t ∈ R. Show that
∫ b

a
(tf ± g)2 ≥ 0.

(b). Using (a), show that

2

∣∣∣∣∣
∫ b

a

fg

∣∣∣∣∣ ≤ t

∫ b

a

f2 +
1

t

∫ b

a

g2

for all t > 0

(c). Suppose
∫ b

a
f2 = 0. Show that

∫ b

a
fg = 0

(d). Prove the Cauchy-Bunyakovsky-Schwarz Inequality (or simply Schwarz Inequality):∣∣∣∣∣
∫ b

a

fg

∣∣∣∣∣
2

≤ (

∫ b

a

|fg|)2 ≤ (

∫ b

a

f2)(

∫ b

a

g2)

Solution.

(a). Note that (tf ± g)2 ≥ 0 point-wise. It follows from monotonicity of integrals that
∫ b

a
(tf ± g)2 ≥

∫ b

a
0 = 0

for all t ∈ R

(b). Fix t > 0. Note that from part (a), we have

0 ≤
∫ b

a

(tf ± g)2 = t2
∫ b

a

f2 ± 2t

∫ b

a

fg +

∫ b

a

g2

It follows that we have

±2

∫ b

a

fg ≤ t

∫ b

a

f2 +
1

t

∫ b

a

g2

since t > 0. Hence we have
∣∣∣2 ∫ b

a
fg

∣∣∣ ≤ t
∫ b

a
f2 + 1

t

∫ b

a
g2.

(c). Suppose
∫ b

a
f2 = 0. It follows that we have

2

∣∣∣∣∣
∫ b

a

fg

∣∣∣∣∣ ≤ 1

t

∫ b

a

g2

for all t > 0. By t → ∞, it follows that we have
∣∣∣∫ b

a
fg

∣∣∣ = 0 and so
∫ b

a
fg = 0.

(d). Note that we always have
∣∣∣∫ b

a
fg

∣∣∣ ≤ ∫ b

a
|fg| by triangle inequality. Hence the first inequality follows by

taking squares. For the second inequality, first we suppose
∫ b

a
f2 ̸= 0. Note that by part (a), for all t ∈ R,

we have

F (t) := t2
∫ b

a

f2 + 2t

∫ b

a

|fg|+
∫ b

a

g2 ≥ 0

Note that F : R → R is a quadratic polynomial with positive leading coefficient. Since F ≥ 0 everywhere,
it never has distinct roots. Therefore by elementary algebra, we have ∆ ≤ 0 where ∆ is the discriminant
of F . It follows that

4(

∫ b

a

|fg|)2 − 4(

∫ b

a

f2)(

∫ b

a

g2) ≤ 0

which implies the second inequality. Now suppose instead
∫ b

a
f2 = 0. Then

∫ b

a
|f |2 = 0. By part (c), it

follows that
∫ b

a
|f ||g| =

∫ b

a
|fg| = 0. Hence, the second inequality is also satisfied in this case.

Common Mistake. A number of you cannot do part (d), which is quite tricky in my opinion. Moreover

many of you missed the case where
∫ b

a
f2 = 0. In addition to the discriminant method above, other methods

include:

• Take t = (
∫ b

a
g2/

∫ b

a
f2)1/2 or t = (

∫ b

a
|fg|)/

∫ b

a
f2

• Take t = 1 and proceed as the proof of Tutorial 3 P.2 Q3, that is, by taking t = 1, we have
∫ b

a
|fg| ≤

1
2

∫ b

a
f2 + 1

2

∫ b

a
g2. Then we first consider the case where

∫ b

a
f2 =

∫ b

a
g2 = 1. Next, we consider in the

general case that f ′ := f/(
∫ b

a
f2)1/2 and g′ := g/(

∫ b

a
g2)1/2. This is a so-called normalization argument.
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