1 (P. 215 Q2). Let $h:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
h(x):= \begin{cases}x+1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

for all $x \in[0,1]$. Show that h is not Riemann integrable.
Solution. Consider a compact interval $I:=[c, d] \subset[0,1]$ with $c<d$ and $\operatorname{diam} h([c, d]):=\sup _{x, y \in[c, d]}|h(x)-h(y)|$. Then it is clear that $\operatorname{diam} h([c, d]) \leq 1+d-0=1+d$ since we have $0 \leq h(x) \leq 1+d$ for all $x \in[c, d]$. Now consider a sequence $\left(q_{n}\right)$ in $[c, d]$ such that $q_{n} \rightarrow d$ (which exists by density of \mathbb{Q}) and any irrational $\alpha \in[c, d]$, then we have $\operatorname{diam} h([c, d]) \geq h\left(q_{n}\right)-h(\alpha)=1+q_{n}$ for all $n \in \mathbb{N}$ and so $\operatorname{diam} h([c, d]) \geq 1+d$ as $n \rightarrow \infty$. It follows that $\operatorname{diam} h([c, d])=1+d$ for all compact interval $I:=[c, d]$ with $c<d$. Now let $P:=\left\{x_{i}\right\}_{i=1}^{k}$ be a partition of $[0,1]$ then it follows from the above that

$$
U(h, P)-L(h, P)=\sum_{i=1}^{k} \omega_{i}(h, P) \Delta x_{i}=\sum_{i=1}^{k} \operatorname{diam} h\left(\left[x_{i-1}, x_{i}\right]\right) \Delta x_{i}=\sum_{i=1}^{k}\left(1+x_{i}\right) \Delta x_{i} \geq \sum_{i=1}^{k} 1 \Delta x_{i}=1-0=1
$$

It follows clearly that h is not Riemann integrable by definition as $U(h, P)-L(h, P)$ cannot be arbitrarily small.
Common Mistake. It is not the case that $\sup h([x, y])=1+c$ for some $c \in \mathbb{Q} \cap(x, y)$ if $y \notin \mathbb{Q}$. Please refer to the above answer regarding how to compute $\sup h([x, y])$ (from the computation of $\operatorname{diam} h([x, y])$. In fact we just need $\sup h([x, y]) \geq 1$ for any interval $[x, y] \subset[0,1]$, which is a lot easier to show.

2 (P. 215 Q8). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $f \geq 0$ pointwise. Suppose $\int_{a}^{b} f=0$. Show that $f \equiv 0$ on $[a, b]$.
Solution. Suppose not. Then $f(c)>0$ for some $c \in[a, b]$. By continuity, there exists $\frac{b-a}{2}>r>0$ such that $f>f(c) / 2$ on $B_{r}(c) \cap[a, b]$. Note that $I:=B_{r}(c) \cap[a, b]$ is an interval of length at least r regardless of where c is. Without loss of generality, write $I:=(t, t+r) \subset[a, b]$ for $t \in[a, b]$ Then it follows that we have

$$
\int_{a}^{b} f \stackrel{(*)}{\geq} \int_{t}^{t+r} f \geq \int_{t}^{t+r} \frac{f(c)}{2} \geq \frac{r f(c)}{2}>0
$$

in which $(*)$ follows from splitting $[a, b]$ into intervals together with the non-negativity of f. Hence contradiction arises as $\int_{a}^{b} f=0$.

Common Mistake. It is not sufficient to just consider $f(c)>0$ and then apply continuity of f to obtain $f>0$ on $B_{r}(c)$. Either one has to consider an even smaller compact interval and apply the extreme value theorem, or one bounds instead $f(c)>\epsilon>0$ for some $\epsilon>0$ first. I chose $\epsilon:=f(c) / 2$ in the above solution. The latter "inserting values" technique is very common in analysis.

3 (P. 215 Q9). Show that the continuity assumption in Q2 (textbook Q8) cannot be dropped, that is, find $f \in \mathcal{R}[a, b] \backslash C([a, b])$ such that for some $a<b \in \mathbb{R}$ such that $\int_{a}^{b} f=0$ but $f(x) \neq 0$ for some $x \in[a, b]$.

Solution. Let $c \in[0,1]$. Consider $f:=\mathbb{1}_{\{c\}}$ on $[0,1]$ the indicator function of c, that is, $f(x)=1$ if $x=c$ and 0 otherwise for all $x \in[0,1]$. Then f is clearly not continuous at c and so not continuous on $[0,1]$. In addition $f \geq 0$ on $[0,1]$ and $f(c) \geq 0$. However f is constantly 0 except for finitely many (one) point(s) while the constant zero function is clearly Riemann integrable with integral 0 . Therefore $f \in \mathcal{R}([0,1])$ with $\int_{0}^{1} f=0$.

Remark. Most of you used similar examples (with some stating the Thomae's functions). In fact, any function that is equal to a continuous function except for finitely many points will do. One could refer to HW 4 solution for an ϵ - argument in showing the Riemann integrability of the counter-example here as well as in computing its integral.

