1 (P. 215 Q2). Let $h: [0,1] \to \mathbb{R}$ be defined by

$$h(x) := \begin{cases} x+1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

for all $x \in [0, 1]$. Show that h is **not** Riemann integrable.

Solution. Consider a compact interval $I := [c, d] \subset [0, 1]$ with c < d and diam $h([c, d]) := \sup_{x,y \in [c,d]} |h(x) - h(y)|$. Then it is clear that diam $h([c, d]) \le 1 + d - 0 = 1 + d$ since we have $0 \le h(x) \le 1 + d$ for all $x \in [c, d]$. Now consider a sequence (q_n) in [c, d] such that $q_n \to d$ (which exists by density of \mathbb{Q}) and any irrational $\alpha \in [c, d]$, then we have diam $h([c, d]) \ge h(q_n) - h(\alpha) = 1 + q_n$ for all $n \in \mathbb{N}$ and so diam $h([c, d]) \ge 1 + d$ as $n \to \infty$. It follows that diam h([c, d]) = 1 + d for all compact interval I := [c, d] with c < d. Now let $P := \{x_i\}_{i=1}^k$ be a partition of [0, 1] then it follows from the above that

$$U(h,P) - L(h,P) = \sum_{i=1}^{k} \omega_i(h,P) \Delta x_i = \sum_{i=1}^{k} \operatorname{diam} h([x_{i-1},x_i]) \Delta x_i = \sum_{i=1}^{k} (1+x_i) \Delta x_i \ge \sum_{i=1}^{k} 1\Delta x_i = 1 - 0 = 1$$

It follows clearly that h is not Riemann integrable by definition as U(h, P) - L(h, P) cannot be arbitrarily small.

Common Mistake. It is not the case that $\sup h([x, y]) = 1 + c$ for some $c \in \mathbb{Q} \cap (x, y)$ if $y \notin \mathbb{Q}$. Please refer to the above answer regarding how to compute $\sup h([x, y])$ (from the computation of diam h([x, y])). In fact we just need $\sup h([x, y]) \ge 1$ for any interval $[x, y] \subset [0, 1]$, which is a lot easier to show.

2 (P. 215 Q8). Let $f : [a, b] \to \mathbb{R}$ be continuous with $f \ge 0$ pointwise. Suppose $\int_a^b f = 0$. Show that $f \equiv 0$ on [a, b].

Solution. Suppose not. Then f(c) > 0 for some $c \in [a, b]$. By continuity, there exists $\frac{b-a}{2} > r > 0$ such that f > f(c)/2 on $B_r(c) \cap [a, b]$. Note that $I := B_r(c) \cap [a, b]$ is an interval of length at least r regardless of where c is. Without loss of generality, write $I := (t, t+r) \subset [a, b]$ for $t \in [a, b]$ Then it follows that we have

$$\int_a^b f \stackrel{(*)}{\geq} \int_t^{t+r} f \geq \int_t^{t+r} \frac{f(c)}{2} \geq \frac{rf(c)}{2} > 0$$

in which (*) follows from splitting [a, b] into intervals together with the non-negativity of f. Hence contradiction arises as $\int_{a}^{b} f = 0$.

Common Mistake. It is not sufficient to just consider f(c) > 0 and then apply continuity of f to obtain f > 0 on $B_r(c)$. Either one has to consider an even smaller compact interval and apply the extreme value theorem, or one bounds instead $f(c) > \epsilon > 0$ for some $\epsilon > 0$ first. I chose $\epsilon := f(c)/2$ in the above solution. The latter "inserting values" technique is very common in analysis.

3 (P. 215 Q9). Show that the continuity assumption in Q2 (textbook Q8) cannot be dropped, that is, find $f \in \mathcal{R}[a,b] \setminus C([a,b])$ such that for some $a < b \in \mathbb{R}$ such that $\int_a^b f = 0$ but $f(x) \neq 0$ for some $x \in [a,b]$.

Solution. Let $c \in [0, 1]$. Consider $f := \mathbb{1}_{\{c\}}$ on [0, 1] the indicator function of c, that is, f(x) = 1 if x = c and 0 otherwise for all $x \in [0, 1]$. Then f is clearly not continuous at c and so not continuous on [0, 1]. In addition $f \ge 0$ on [0, 1] and $f(c) \ge 0$. However f is constantly 0 except for finitely many (one) point(s) while the constant zero function is clearly Riemann integrable with integral 0. Therefore $f \in \mathcal{R}([0, 1])$ with $\int_0^1 f = 0$.

Remark. Most of you used similar examples (with some stating the Thomae's functions). In fact, any function that is equal to a continuous function except for finitely many points will do. One could refer to HW 4 solution for an ϵ - argument in showing the Riemann integrability of the counter-example here as well as in computing its integral.