1 (P. 207 Q6).
i. Let $f(x):=\left\{\begin{array}{ll}2 & x \in[0,1) \\ 1 & x \in[1,2]\end{array}\right.$ for all $x \in[0,2]$. Show that $f \in \mathcal{R}[0,2]$ and find $\int_{0}^{2} f$.
ii. Let $h(x):=\left\{\begin{array}{ll}2 & x \in[0,1) \\ 3 & x=1 \\ 1 & x \in(1,2]\end{array}\right.$. Show that $h \in \mathcal{R}([0,2])$ and find $\int_{0}^{2} h$.

Solution.

i. Let $1>\epsilon>0$. Then consider the partition $P:=\left\{0,1-\frac{\epsilon}{4}, 1+\frac{\epsilon}{4}, 2\right\}=\left\{x_{i}\right\}_{i=0}^{k}$. It follows that

$$
\sum_{i=1}^{k} \omega_{i}(f, P)\left(x_{i}-x_{i-1}\right)=\operatorname{diam} f\left(\left[1-\frac{\epsilon}{4}, 1+\frac{\epsilon}{4}\right]\right)\left(1+\frac{\epsilon}{4}-\left(1-\frac{\epsilon}{4}\right)\right)=(2-1) \frac{\epsilon}{2}<\epsilon
$$

By definition of integrability, it follows that $f \in \mathcal{R}([0,2])$. To compute the integral, now consider the partitions $Q_{\epsilon}:=\left\{0,1-\frac{\epsilon}{4}, 1+\frac{\epsilon}{4}, 2\right\} \subset[0.2]$ for all $\epsilon \in(0,1)$. It is easy to see that

$$
\begin{aligned}
& U\left(f, Q_{\epsilon}\right)=2 \cdot\left(1-\frac{\epsilon}{4}\right)+2 \cdot \frac{\epsilon}{2}+1 \cdot\left(1-\frac{\epsilon}{4}\right)=3+\frac{\epsilon}{4} \\
& L\left(f, Q_{\epsilon}\right)=2 \cdot\left(1-\frac{\epsilon}{4}\right)+1 \cdot \frac{\epsilon}{2}+1 \cdot\left(1-\frac{\epsilon}{4}\right)=3-\frac{\epsilon}{4}
\end{aligned}
$$

Note that by definition of integrals, we have that $L\left(f, Q_{\epsilon}\right) \leq \int_{0}^{2} f \leq U\left(f, Q_{\epsilon}\right)$ for all $\epsilon \in(0,1)$. As $\epsilon \rightarrow 0$, we have by Squeeze theorem that $\int_{0}^{2} f=3$.
ii. Note that $h \in \mathcal{R}([0,2])$ if and only if $f:=\left.h\right|_{[0,1]} \in \mathcal{R}([0,1])$ and $g:=\left.h\right|_{[1,2]} \in \mathcal{R}([1,2])$. Note that f is constantly 2 on $[0,1]$ except for finitely many (one) point while constant functions are clearly Riemann integrable and have easily computable integrals. It follows that $f \in \mathcal{R}([0,1])$ and we have $\int_{0}^{1} f=\int_{0}^{1} 2=2$ (cf. Theorem 7.1.3). By similar argument, we can conclude that $\int_{1}^{2} g=\int_{1}^{2} 1=1$. Therefore $h \in \mathcal{R}([0,2])$ by the initial remark with the integral being $\int_{0}^{2} h=\int_{0}^{1} f+\int_{1}^{2} g=2+1=3$.

Remark. The two proof methods in (i) and (ii) can be used to prove both questions.
2 (P. 207 Q8). Let $a<b$. Let $f \in \mathcal{R}([a, b])$. Suppse $|f| \leq M$ point-wise on $[a, b]$ for some $M>0$. Show that

$$
\left|\int_{a}^{b} f\right| \leq M(b-a)
$$

Solution. Let $g:=M \cdot \mathbb{1}_{[a, b]}:[a, b] \rightarrow \mathbb{R}$, that is, g is constantly M on $[a, b]$. It follows from the assumption that $|f| \leq g$ on $[a, b]$ pointwise. Note that $g \in \mathcal{R}([a, b])$ clearly with $\int_{a}^{b} g=\int_{a}^{b} M=M(b-a)$. It follows from the triangle inequality and monotonicity of integrals that we have

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f| \leq \int_{a}^{b} g=M(b-a)
$$

Alternatively, one can proceed by considering the definitions of upper and lower sums. Note that we have $-M \leq f \leq M$ point-wise by the assumption. Let $P:=\left\{x_{i}\right\}_{i=1}^{k} \subset[a, b]$ be a partition. Then we have

$$
\begin{aligned}
U(f, P) & :=\sum_{i=1}^{k} \sup f\left(\left[x_{i-1}, x_{i}\right]\right)\left(x_{i}-x_{i-1}\right) \leq \sum_{i=1}^{k} M\left(x_{i}-x_{i-1}\right)=M(b-a) \\
L(f, P) & :=\sum_{i=1}^{k} \inf f\left(\left[x_{i-1}, x_{i}\right]\right)\left(x_{i}-x_{i-1}\right) \geq \sum_{i=1}^{k}-M\left(x_{i}-x_{i-1}\right)=-M(b-a)
\end{aligned}
$$

Since P is arbitrary, by consider net convergence (or simply supremums/ infimums, we have

$$
-M(b-a) \leq \lim _{P} L(f, P)={\underset{\underline{\int}}{a}}_{b}^{b}=\int_{a}^{b} f=\bar{\int}_{a}^{b} f=\lim _{P} U(f, P) \leq M(b-a)
$$

The result follows clearly.

3 (P. 207 Q13). Let $a<b \in \mathbb{R}$. Fix $c<d \in[a, b]$. Define $\phi(x):=\left\{\begin{array}{ll}\alpha & x \in[c, d] \\ 0 & x \notin[c, d]\end{array}\right.$ for all $x \in[a, b]$ for some real number $\alpha>0$.
i. Show that $\phi \in \mathcal{R}([a, b])$
ii. Show that $\int_{a}^{b} \phi=\alpha(d-c)$

Solution. The proof here is similar to Q1. We demonstrate an $\epsilon-$ argument here.
i. We shall only show the case for $c, d \in(a, b)$. The case that at least one of c, d is an endpoint is similar. Let $\epsilon>0$ such that $\epsilon<c-a, b-d, \frac{d-c}{2}$. Consider the partition $P_{\epsilon}:=\left\{a, c-\frac{\epsilon}{2}, c+\frac{\epsilon}{2}, d-\frac{\epsilon}{2}, d+\frac{\epsilon}{2}, b\right\}=:\left\{x_{i}^{\epsilon}\right\}_{i=1}^{k}$. The bound of ϵ ensures that the listed elements of P_{ϵ} strictly increase from left to right. It follows clearly that we have

$$
\begin{aligned}
U\left(\phi, P_{\epsilon}\right) & =\alpha \cdot\left(c+\frac{\epsilon}{2}-\left(c-\frac{\epsilon}{2}\right)\right)+\alpha \cdot\left(d-\frac{\epsilon}{2}-\left(c+\frac{\epsilon}{2}\right)\right)+\alpha \cdot\left(d+\frac{\epsilon}{2}-\left(d-\frac{\epsilon}{2}\right)\right) \\
& =\alpha \cdot \epsilon+\alpha(d-c-\epsilon)+\alpha \cdot \epsilon=\alpha(d-c+\epsilon) \\
L\left(\phi, P_{\epsilon}\right) & =0 \cdot\left(c+\frac{\epsilon}{2}-\left(c-\frac{\epsilon}{2}\right)\right)+\alpha \cdot\left(d-\frac{\epsilon}{2}-\left(c+\frac{\epsilon}{2}\right)\right)+0 \cdot\left(d+\frac{\epsilon}{2}-\left(d-\frac{\epsilon}{2}\right)\right) \\
& =\alpha(d-c-\epsilon)
\end{aligned}
$$

Hence, we have by definition that

$$
L\left(\phi, P_{\epsilon}\right) \leq \int_{a}^{b} \phi \leq \int_{a}^{b} \phi \leq U\left(\phi, P_{\epsilon}\right)
$$

for all $\epsilon>0$ and $\epsilon<c-a, b-d, \frac{d-c}{2}$. As $\epsilon \rightarrow 0$, we clear have $\alpha(d-c) \leq \int_{a}^{b} \phi \leq \int_{a}^{b} \phi \leq \alpha(d-c)$. This shows that $\int_{a}^{b} \phi=\int_{a}^{b} \phi=\alpha(d-c)$. In particular, $\phi \in \mathcal{R}([a, b])$ by definition.
ii. It is clear from last paragraph of (i) that $\int_{a}^{b} \phi:=\bar{\int}_{a}^{b} \phi=\int_{a}^{b}=\alpha(d-c)$.

Remark. For part (i), as suggested by several of you, alternatively, one can consider any partition $P:=\left\{x_{i}\right\}_{i=1}^{k}$ with $\max _{i=1}^{k}\left|x_{i}-x_{i-1}\right|$ small enough and then split the sum $\sum_{i=1}^{k} \omega_{i}(f, P) \Delta x_{i}$ into the form

$$
\sum_{i=1}^{k} \omega_{i}(f, P) \Delta x_{i}=\sum_{i ;\left[x_{i-1}, x_{i}\right] \cap[c, d]=\phi} \omega_{i}(f, P) \Delta x_{i}+\sum_{i ;\left[x_{i-1}, x_{i}\right] \cap[c, d] \neq \phi} \omega_{i}(f, P) \Delta x_{i}
$$

You are highly encouraged to try this approach if you have not.

