1 (P. 196 Q4). Show that if x > 0, then we have

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 \le \sqrt{1+x} \le 1 + \frac{1}{2}x\tag{1}$$

Solution. Define $f(x) := \sqrt{1+x}$ for all x > -1. Then f is smooth on $(-1, \infty)$. Let x > 0. Then by Taylor's theorem, we have

$$f(x) - f(0) = f'(0)x + \frac{1}{2}f''(\xi)x^2$$

for some $\xi \in (0, x)$. Note that $f'(t) = \frac{1}{2}(1+t)^{-1/2}$ and $f''(t) = \frac{-1}{4}(1+t)^{-3/2}$ for all t > -1. It follows that we have $f'(0) = \frac{1}{2}$ and $f''(\xi) = \frac{-1}{4}(1+\xi)^{-3/2} \in [\frac{-1}{4}, 0]$ as $(1+\xi)^{-3/2} \in [0, 1]$ since $\xi > 0$. Hence, we have

$$\frac{-1}{8}x^2 \le f(x) - f(0) - f'(0)x = \frac{1}{2}f''(\xi)x^2 \le 0$$

The result follows by re-arranging the terms.

Remark. Parts of the can be obtained by considering the first and third derivatives as well.

2. Let $f(x) := e^x$ for all $x \in \mathbb{R}$. Show that the remainder term in Taylor's Theorem converges to 0 as $n \to \infty$ for all fixed $x_0, x \in \mathbb{R}$.

Solution. Consider $x_0 < x$ without loss of generality. Denote $R_n(x)$ the nth-order remainder term in Taylor's theorem with respect to x_0 for all $x \in \mathbb{R}$ and $n \in \mathbb{N}_{>1}$, that is,

$$f(x) = \sum_{i=0}^{n-1} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + R_n(x)$$

It follows that $R_n(x) = \frac{f^{(n)}(\xi_n)}{n!}(x-x_0)^n$ for some $\xi_n \in (x_0, x)$ for all $n \in \mathbb{N}$. We proceed to show that $\lim_n R_n(x) = 0$.

Method 1: Using $\epsilon - N$ definition. Note that $f^{(n)}(x) = f(x)$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. In addition f is increasing. It follows that

$$0 \le R_n(x) = \frac{f^{(n)}(\xi_n)}{n!} (x - x_0)^n = \frac{e^{\xi_n}}{n!} (x - x_0)^n \le \frac{e^x}{n!} (x - x_0)^n$$

Write $a := x - x_0 > 0$. We claim that $\lim_n \frac{a^n}{n!} = 0$. Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ such that N > a. Suppose $n \ge N$ and $n > a^{N+1}/\epsilon N!$. Then we have

$$\left|\frac{a^n}{n!}\right| = \frac{a^n}{n!} = \frac{a}{n} \cdots \frac{a}{N+1} \cdot \frac{a^N}{N!} \le \frac{a}{n} \frac{a^N}{N!} < \epsilon$$

It follows from definition that $\lim_{n \to \infty} \frac{a^n}{n!} = 0$. Hence, by sandwich theorem we have $\lim_{n \to \infty} R_n(x) = 0$.

Method 2: Ratio Test. Note again that $f^{(n)}(x) = f(x)$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Hence, we have

$$\frac{R_{n+1}(x)}{R_n(x)} = \frac{e^{\xi_{n+1}}}{e^{\xi_n}} \frac{(x-x_0)^{n+1}}{(x-x_0)^n} \frac{n!}{(n+1)!} = \frac{x-x_0}{n+1} e^{\xi_{n+1}-\xi_n} \le \frac{x-x_0}{n+1} e^{x-x_0}$$

As $x - x_0$ is independent of n it follows that $\lim_n R_{n+1}(x)/R_n(x) = 0 < 1$. This implies that $\lim_n R_n(x) = 0$ (we can in fact deduce that $(R_n(x))$ is summable).

Common Mistake. It is important to note that the ξ obtained in Taylor's Theorem depends on x, x_0, n . Therefore to show that $\lim_n R_n(x) = 0$, one has to give a bound for e^{ξ_n} , or $e^{\xi_{n+1}-\xi_n}$ if the ratio test is used, so that the term is independent of n. Otherwise, you cannot take $n \to \infty$ with $\xi = \xi_n$ in hand. Many of you made this mistake.

- **3.** Define $h(x) := \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$.
 - i. Show that $h^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.
 - ii. Show that the remainder term in Taylor's Theorem for $x_0 = 0$ does not converge to 0 for all $x \neq 0$ as $n \rightarrow \infty$

Solution.

i. We first show that $\lim_{x\to 0} \frac{h(x)}{x^k} = 0$ for all $k \ge 1$. We proceed using induction. Write f(x) := 1/x and $g(x) := e^{1/x^2}$. Note that $g'(x) \ne 0$ for all $x \ne 0$ and $\lim_{x\to 0} g(x) = \infty$. Furthermore $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \frac{-x^{-2}}{2x^{-3}g(x)} = \lim_{x\to 0} \frac{x}{2e^{1/x^2}} = 0$. By considering both 1-sided limits, it follows that the L'Hospital rule applies. Hence, $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{h(x)}{x} = 0$. Now suppose $\lim_{x\to 0} \frac{h(x)}{x^n}$ for all n < k. Write $f(x) := 1/x^k$ and $g(x) := e^{1/x^2}$. Then $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \frac{-kx^{-k-1}}{-2x^{-3}g(x)} = \lim_{x\to 0} \frac{k}{2} \frac{h(x)}{k^{k-2}} = 0$ by induction hypothesis. Similarly a condition for L'Hospital Rule applies. Therefore $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{h(x)}{x^k} = 0$.

We now show that $\lim_{x\to 0} \frac{h^{(n)}(x)}{x^k} = 0$ for all $n, k \in \mathbb{N}$. By the above $\lim_{x\to 0} \frac{h(x)}{x^k} = 0$ for all $k \in \mathbb{N}$. Now fix $n \ge 1$. Suppose $\lim_{x\to 0} \frac{h^{(j)}(x)}{x^k}$ for all j < n and $k \in \mathbb{N}$. Note that as $n \ge 1$, we have $h^{(n)}(x) = (h')^{(n-1)}(x)$ for all $x \ne 0$ while $h'(x) = -2x^{-3}h(x)$. It follows from the product rule (Leibniz's Rule) that for $x \ne 0$

$$h^{(n)}(x) = (h')^{(n-1)}(x) = (-2x^{-3}h(x))^{(n-1)} = \sum_{i=0}^{n-1} \binom{n-1}{i} (-2x^{-3})^{(i)}h^{(n-1-i)}(x)$$

By linearity and induction hypothesis, it follows that $\lim_{x\to 0} h^{(n)}(x)/x^k = 0$. Hence $\lim_{x\to 0} \frac{h^{(n)}(x)}{x^k} = 0$ for all $n, k \in \mathbb{N}$.

To the end, we conclude that $h^{(n)}(0) = 0$ by an induction argument: the case for n = 0 is clear. Let $n \ge 1$. Suppose $h^{(k)}(0) = 0$ for all k < n. Then we have by the induction hypothesis as well as previously proved results that

$$h^{(n)}(0) := \lim_{x \to 0} \frac{h^{(n-1)}(x) - h^{(n-1)}(0)}{x - 0} = \lim_{x \to 0} \frac{h^{(n-1)}(x)}{x} = 0$$

ii. Note that h is smooth on \mathbb{R} by (i); we can apply Taylor's Theorem. Let $R_n(x)$ be the nth order remainder term for $x_0 = 0$ with $x \neq 0$. Then $h(x) = \sum_{i=1}^{n-1} \frac{h^{(i)}(0)}{i!} x^i + R_n(x)$. It follows from part (i) that $h(x) = R_n(x)$ for all $n \in N$ and $x \neq 0$. It is then clear that $\lim_n R_n(x) = h(x) \neq 0$ for all $x \neq 0$.

Common Mistake.

- a). It is completely wrong to use $\lim_{x\to 0} \frac{h(x)}{x^k} = 0$ to deduce that $\lim_{x\to 0} \frac{h^{(k)}(x)}{x} = 0$ by the L'Hospital Rule. The aim of the L'Hospital Rule is to use derivatives to compute limits and require *in advance* that the limit of the derivative exists. Please revise the L'Hospital Rule.
- b). Note that you cannot transform $\lim_{x\to 0} e^{-1/x^2} x^{-1}$ into $\lim_{y\to\infty} e^{-y^2} y$ as this is true for only $x\to 0^+$.

Remark.

- i. This example is the standard example of a smooth function that does not admit Taylor's expansion at some points, that is, a smooth function that is not analytic. Similar behaviors do not occur in complex variables in which analyticity and complex differentiability (holomorphy) coincide.
- ii. Some of you used the Taylor's theorem on e^{-1/x^2} to conclude that $e^{-1/x^2} \le n! x^{2n}$ for $x \ne 0$ and for $n \in \mathbb{N}$. This is a good way to simplify the above proof.