1 (P. 170 Q2). Let $f(x):=x^{1 / 3}$ for all $x \in \mathbb{R}$. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is not differentiable at $x=0$.
Solution. By definition, it is equivalent to show that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{1 / 3}}{x}=\lim _{x \rightarrow 0} \frac{1}{x^{2 / 3}}$ does not exist. Consider the sequence given by $x_{n}:=1 / n^{3}$ for all $n \in \mathbb{N}$. Then $x_{n} \rightarrow 0$ clearly. However, $\frac{1}{x_{n}^{2 / 3}}=n^{2} \rightarrow \infty$. It follows from the sequential criteria that the limit does not exist. Therefore, f is not differentiable at $x=0$.
2 (P. 170 Q4). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x):=\left\{\begin{array}{ll}x^{2} & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$ Show that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
Solution. The existence is equivalent to show that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists. To proceed we find the explicit limit and claim that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$. Let $\epsilon>0$. Then take $\delta:=\epsilon>0$. Suppose $x \in \mathbb{R}$ such that $0<|x-0|<\delta$. Then

$$
\left|\frac{f(x)}{x}-0\right|=\left|\frac{f(x)}{x}\right|=\frac{|f(x)|}{|x|} \stackrel{(*)}{\leq} \frac{\left|x^{2}\right|}{|x|}=|x| \leq \delta=\epsilon
$$

where $(*)$ follows as $|f(x)| \leq\left|x^{2}\right|$ regardless of $x \in \mathbb{Q}$ or $x \notin \mathbb{Q}$, which follows clear from the definition of f. By the definition of limits, $f^{\prime}(0)=0$. In particular, f is differentiable at 0 .

Common Mistake. I do not accept solutions similar to the following: it is not appropriate to consider x to lie in certain subset before taking limits as you are taking limit with respect to the domain of f. To play safe, use $\epsilon-\delta$ definition or limit theorems.

$$
\begin{aligned}
& \text { Q4 For } x \text { is rational, we have } \\
& \qquad \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2}}{x}=\lim _{x \rightarrow 0} x=0 \\
& \text { For } x \text { is irrational, we have } \\
& \qquad \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{0}{x}=0 \\
& \text { Hence, for } x \in \mathbb{R} \text { and } x \rightarrow 0, f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0 \text {. } \\
& \text { Therefore, } f \text { is differentiable at } x=0 \text {. }
\end{aligned}
$$

Figure 1: Avoid the above in the future, especially the first two lines
3 (P. 170 Q10). Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x):=\left\{\begin{array}{ll}x^{2} \sin \left(1 / x^{2}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ Show that
a. $\quad g$ is differentiable on \mathbb{R}
b. g^{\prime} is unbounded on $[-1,1]$.

Solution.

a. Note that $g(x)=x^{2} \sin \left(1 / x^{2}\right)$ for all $x \in(0, \infty)$. It follows from the chain rule, product rule, quotient rule and differentiability of trigonometry and polynomial functions on $(0, \infty)$ that g is differentiable on $(0, \infty)$. By a similar argument, g is differentiable on $(-\infty, 0)$. It remains to show that g is differentiable at $x=0$. To this end, it is equivalent to show the existence of $\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0} x \sin \left(1 / x^{2}\right)$. Note that $\left|x \sin 1 / x^{2}\right| \leq|x|$ for all $x \neq 0$. By the squeeze theorem, it follows that $\lim _{x \rightarrow 0} x \sin 1 / x^{2}=0$ and so $g^{\prime}(0)=0$ and g is differentiable at 0 .
b. By part a, together with the chain and product rules, we have that

$$
g^{\prime}(x):= \begin{cases}2 x \sin \left(1 / x^{2}\right)-\frac{2}{x} \cos \left(1 / x^{2}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Consider the non-negative sequence $\left(x_{n}\right)$ given by $\frac{1}{x_{n}^{2}}=2 n \pi$ for all $n \in \mathbb{N}$. Note that $\lim x_{n} \rightarrow 0$ clearly and $g^{\prime}\left(x_{n}\right)=-2 \sqrt{2 n \pi}$ for all $n \in \mathbb{N}$. It follows that $g^{\prime}\left(x_{n}\right) \rightarrow-\infty$. Hence, g^{\prime} is unbounded on any neighborhood (open interval) containing 0 (consider $r>0$ and $M>0$ and choose n large enough such that $x_{n} \in(-r, r)$ and $\left.g^{\prime}\left(x_{n}\right)<-M\right)$. In particular g^{\prime} is unbounded on $[-1,1]$

