1. Discuss the convergence and the uniform convergence of the series $\sum f_{n}$ where $f_{n}(x)$ is given by
i. $f_{n}(x):=\frac{x^{n}}{x^{n}+1}$ for $x \geq 0$
ii. $f_{n}(x):=\frac{(-1)^{n}}{n+x}$ for $x \geq 0$

Solution.

i. We first claim that f_{n} converges point-wise precisely on $[0,1)$. When $x \geq 1, f_{n}(x)=\frac{x^{n}}{x^{n}+1} \geq \frac{x^{n}}{x^{n}+x^{n}}=\frac{1}{2}$ for all $n \in \mathbb{N}$. It follows clearly that $\sum_{n} f_{n}(x)$ diverges. It remains to consider the convergence of $\sum f_{n}$ on $[0,1)$. Now suppose $x \in[0,1)$. Then $\left|f_{n}(x)\right| \leq x^{n}$. It follows from the convergence of geometric series and the comparison test that $\sum f_{n}(x)$ converges. Hence, $\sum f_{n}$ converges point-wise on $[0,1)$ but diverges elsewhere.
Next, we claim that f_{n} is not uniformly converging on its domain of convergence, that is, on $[0,1)$. We proceed by contradiction. Suppose $\left(\sum f_{n}\right)$ converges uniformly on $[0,1)$. Then f_{n} converges to 0 uniformly. This is because we have $f_{n}=s_{n}-s_{n-1}$ where $s_{n}:=\sum_{k=1}^{n} f_{k}$ for all $n \in \mathbb{N}$. It follows from the Cauchy criteria (on the uniform convergence of $\left(s_{n}\right)$) that f_{n} converges to 0 uniformly. However, for all $n \in \mathbb{N}$, take $x_{n}:=(1 / 2)^{1 / n} \in[0,1)$. It follows that we have $f_{n}\left(x_{n}\right)=\frac{1 / 2}{1 / 2+1}=\frac{1}{3}$. It follows from definitions that f_{n} does not converge uniformly to 0 and so contradiction arises.
ii. Write $a_{n}(x):=\frac{1}{n+x}$ and so $f_{n}(x)=(-1)^{n} a_{n}(x)$ for all $x \geq 0$ and $n \in \mathbb{N}$. We claim that f_{n} converges point-wise on $x \geq 0$. Fix $x \geq 0$ then $a_{n}(x):=\frac{1}{n+x}$ is decreasing with $\lim a_{n}(x)=0$. By the alternating series test, $\sum(-1)^{n} a_{n}(x)=\sum f_{n}(x)$ converges.
Next, we claim that f_{n} converges uniformly on $[0, \infty)$. To this end, observe that for all $n \in \mathbb{N}$ and $x \geq 0$, we have

$$
0 \leq a_{n}(x)-a_{n+1}(x)=\frac{1}{n+x}-\frac{1}{n+1+x}=\frac{1}{(n+x)(n+1+x)} \leq \frac{1}{n^{2}}
$$

Hence, for all odd $n \in \mathbb{N}$ and $p \geq 1 \in \mathbb{N}$ we have

$$
0 \leq \sum_{k=n+1}^{n+p} f_{k}(x)=\sum_{i=1}^{p / 2} a_{n+i}(x)-a_{n+i+1}(x) \leq \sum_{i=1}^{p / 2} \frac{1}{n+i}=\sum_{k=n+1}^{n+p / 2} \frac{1}{k^{2}}
$$

if p is even; and we have

$$
0 \leq \sum_{k=n+1}^{n+p} f_{k}(x)=\sum_{i=1}^{(p-1) / 2} a_{n+i}(x)-a_{n+i+1}(x)+a_{n+p}(x) \leq \sum_{k=n+1}^{n+(p-1) / 2} \frac{1}{k^{2}}+\frac{1}{n}
$$

Combining the two, we have

$$
\left|\sum_{k=n+1}^{n+p} f_{k}(x)\right| \leq \sum_{k=n+1}^{n+p} \frac{1}{k^{2}}+\frac{1}{n}
$$

for all odd $n \in \mathbb{N}$ and $p \in \mathbb{N}$. We clearly have similar inequalities when n is even. Hence by the convergence of $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, it is clear that the Cauchy condition is valid for $\sum f_{k}$ and so $\sum f_{k}$ converges uniformly on $x \geq 0$.

Remark. For Q1i, many of you also discussed uniform convergence of the series on compact sets, which is totally relevant and can reward you marks.
2. Let $\left(c_{n}\right)$ be a decreasing sequence of positive numbers. Suppose $\sum c_{n} \sin n x$ converges uniformly. Show that $\lim n c_{n}=0$.
Solution. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\left|\sum_{k=n}^{2 n} c_{k} \sin (k x)\right|<\epsilon$ for all $x \in \mathbb{R}$ by applying Cauchy criteria on the uniform convergence in question. For all $n \geq N$, we take $x_{n}:=\frac{\pi}{4 n}$. Then $n x_{n}=\pi / 4$ and $2 n x_{n}=\pi / 2$. It follows that $k x_{n} \in[\pi / 4, \pi / 2]$ for all $k \in[n, 2 n] \cap \mathbb{N}$. Hence, $\sin \left(k x_{n}\right) \geq \sin (\pi / 4) \geq \sqrt{2} / 2$ for all $n \geq N$ and $k \in[n, 2 n] \cap \mathbb{N}$. It follows that we have for all $n \geq N$ that

$$
\epsilon>\left|\sum_{k=n}^{2 n} c_{k} \sin (k x)\right|=\sum_{k=n}^{2 n} c_{k} \sin (k x) \geq \frac{\sqrt{2}}{2} \sum_{k=n}^{2 n} c_{k} \stackrel{\left(c_{k}\right) \downarrow}{\geq} \frac{\sqrt{2}}{2} \sum_{k=n}^{2 n} c_{2 n} \geq \frac{\sqrt{2}}{2} n c_{2 n}
$$

Hence, for all $m \geq 2 N+1,\lfloor m / 2\rfloor \geq N$. It follows that $\epsilon>\frac{\sqrt{2}}{2}\lfloor m / 2\rfloor c_{2\lfloor m / 2\rfloor} \geq \frac{\sqrt{2}}{8}\left(4\left\lfloor\frac{m}{2}\right\rfloor\right) c_{m} \geq \frac{\sqrt{2}}{8} m c_{m}$. It follows that $\lim n c_{n}=0$.
Remark. After proving $\lim 2 n c_{2 n}=0$, one can also consider $(2 n+1) c_{2 n+1} \leq(2 n+1) c_{2 n} \leq 2 n c_{2 n}+c_{2 n} \leq$ $2 n c_{2 n}+2 n c_{2 n} \rightarrow 0$ as $n \rightarrow \infty$. Combining $2 n c_{2 n} \rightarrow 0$ and $(2 n+1) c_{2 n+1} \rightarrow 0$, we have $n c_{n} \rightarrow 0$.
3. Find a series expansion for $f(x):=\int_{0}^{x} e^{-t^{2}} d t$ for $x \in \mathbb{R}$.

Solution. First note that $e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}$ for all $t \in \mathbb{R}$ is the power series expansion for $t \mapsto e^{t}$. Note that the power series converges everywhere on \mathbb{R} and so converges on every compact intervals (on $[-\eta, \eta]$ where $\eta>0$ in particular). Hence, the (power) series expansion $e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!}$ also converges uniformly for all compact set. In particular, it converges uniformly on $[0, x]$ for all $x \in \mathbb{R}$. Hence by limit-integral exchange theorems, we have

$$
f(x):=\int_{0}^{x} e^{-t^{2}} d t=\int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!} d t=\sum_{n=0}^{\infty} \int_{0}^{x} \frac{(-1)^{n} t^{2 n}}{n!} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \frac{x^{2 n+1}}{n!}
$$

for all $x \in \mathbb{R}$ to be the required series expansion.
Common Mistake. One must verify every interchange of integrals and limits (even in future courses). Hence you must state the uniform convergence for the power series of e^{t} on compact sets. Note the the power series is NOT uniformly converging on \mathbb{R} (try to prove yourself!). A number of you wrote too few for this question.

