- 1. Discuss the convergence and the uniform convergence of the series $\sum f_n$ where $f_n(x)$ is given by
- i. $f_n(x) := \frac{x^n}{x^n+1}$ for $x \ge 0$ ii. $f_n(x) := \frac{(-1)^n}{n+x}$ for $x \ge 0$

Solution.

i. We first claim that f_n converges point-wise precisely on [0, 1). When $x \ge 1$, $f_n(x) = \frac{x^n}{x^n+1} \ge \frac{x^n}{x^n+x^n} = \frac{1}{2}$ for all $n \in \mathbb{N}$. It follows clearly that $\sum_n f_n(x)$ diverges. It remains to consider the convergence of $\sum f_n$ on [0, 1). Now suppose $x \in [0, 1)$. Then $|f_n(x)| \le x^n$. It follows from the convergence of geometric series and the comparison test that $\sum f_n(x)$ converges. Hence, $\sum f_n$ converges point-wise on [0, 1) but diverges elsewhere.

Next, we claim that f_n is not uniformly converging on its domain of convergence, that is, on [0, 1). We proceed by contradiction. Suppose $(\sum f_n)$ converges uniformly on [0, 1). Then f_n converges to 0 uniformly. This is because we have $f_n = s_n - s_{n-1}$ where $s_n := \sum_{k=1}^n f_k$ for all $n \in \mathbb{N}$. It follows from the Cauchy criteria (on the uniform convergence of (s_n)) that f_n converges to 0 uniformly. However, for all $n \in \mathbb{N}$, take $x_n := (1/2)^{1/n} \in [0, 1)$. It follows that we have $f_n(x_n) = \frac{1/2}{1/2+1} = \frac{1}{3}$. It follows from definitions that f_n does not converge uniformly to 0 and so contradiction arises.

ii. Write $a_n(x) := \frac{1}{n+x}$ and so $f_n(x) = (-1)^n a_n(x)$ for all $x \ge 0$ and $n \in \mathbb{N}$. We claim that f_n converges point-wise on $x \ge 0$. Fix $x \ge 0$ then $a_n(x) := \frac{1}{n+x}$ is decreasing with $\lim a_n(x) = 0$. By the alternating series test, $\sum (-1)^n a_n(x) = \sum f_n(x)$ converges.

Next, we claim that f_n converges uniformly on $[0, \infty)$. To this end, observe that for all $n \in \mathbb{N}$ and $x \ge 0$, we have

$$0 \le a_n(x) - a_{n+1}(x) = \frac{1}{n+x} - \frac{1}{n+1+x} = \frac{1}{(n+x)(n+1+x)} \le \frac{1}{n^2}$$

Hence, for all odd $n \in \mathbb{N}$ and $p \ge 1 \in \mathbb{N}$ we have

$$0 \le \sum_{k=n+1}^{n+p} f_k(x) = \sum_{i=1}^{p/2} a_{n+i}(x) - a_{n+i+1}(x) \le \sum_{i=1}^{p/2} \frac{1}{n+i} = \sum_{k=n+1}^{n+p/2} \frac{1}{k^2}$$

if p is even; and we have

$$0 \le \sum_{k=n+1}^{n+p} f_k(x) = \sum_{i=1}^{(p-1)/2} a_{n+i}(x) - a_{n+i+1}(x) + a_{n+p}(x) \le \sum_{k=n+1}^{n+(p-1)/2} \frac{1}{k^2} + \frac{1}{n}$$

Combining the two, we have

$$\left|\sum_{k=n+1}^{n+p} f_k(x)\right| \le \sum_{k=n+1}^{n+p} \frac{1}{k^2} + \frac{1}{n}$$

for all odd $n \in \mathbb{N}$ and $p \in \mathbb{N}$. We clearly have similar inequalities when n is even. Hence by the convergence of $\sum_{k=1}^{\infty} \frac{1}{k^2}$, it is clear that the Cauchy condition is valid for $\sum f_k$ and so $\sum f_k$ converges uniformly on $x \ge 0$.

Remark. For Q1i, many of you also discussed uniform convergence of the series on compact sets, which is totally relevant and can reward you marks.

2. Let (c_n) be a decreasing sequence of positive numbers. Suppose $\sum c_n \sin nx$ converges uniformly. Show that $\lim nc_n = 0$.

Solution. Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$, we have $\left|\sum_{k=n}^{2n} c_k \sin(kx)\right| < \epsilon$ for all $x \in \mathbb{R}$ by applying Cauchy criteria on the uniform convergence in question. For all $n \ge N$, we take $x_n := \frac{\pi}{4n}$. Then $nx_n = \pi/4$ and $2nx_n = \pi/2$. It follows that $kx_n \in [\pi/4, \pi/2]$ for all $k \in [n, 2n] \cap \mathbb{N}$. Hence, $\sin(kx_n) \ge \sin(\pi/4) \ge \sqrt{2}/2$ for all $n \ge N$ and $k \in [n, 2n] \cap \mathbb{N}$. It follows that we have for all $n \ge N$ that

$$\epsilon > \left| \sum_{k=n}^{2n} c_k \sin(kx) \right| = \sum_{k=n}^{2n} c_k \sin(kx) \ge \frac{\sqrt{2}}{2} \sum_{k=n}^{2n} c_k \stackrel{(c_k)\downarrow}{\ge} \frac{\sqrt{2}}{2} \sum_{k=n}^{2n} c_{2n} \ge \frac{\sqrt{2}}{2} nc_{2n}$$

Hence, for all $m \ge 2N + 1$, $\lfloor m/2 \rfloor \ge N$. It follows that $\epsilon > \frac{\sqrt{2}}{2} \lfloor m/2 \rfloor c_{2\lfloor m/2 \rfloor} \ge \frac{\sqrt{2}}{8} (4\lfloor \frac{m}{2} \rfloor) c_m \ge \frac{\sqrt{2}}{8} m c_m$. It follows that $\lim nc_n = 0$.

Remark. After proving $\lim 2nc_{2n} = 0$, one can also consider $(2n+1)c_{2n+1} \leq (2n+1)c_{2n} \leq 2nc_{2n} + c_{2n} \leq 2nc_{2n} + 2nc_{2n} \rightarrow 0$ as $n \rightarrow \infty$. Combining $2nc_{2n} \rightarrow 0$ and $(2n+1)c_{2n+1} \rightarrow 0$, we have $nc_n \rightarrow 0$.

3. Find a series expansion for $f(x) := \int_0^x e^{-t^2} dt$ for $x \in \mathbb{R}$.

Solution. First note that $e^t = \sum_{n=0}^{\infty} \frac{t^n}{n!}$ for all $t \in \mathbb{R}$ is the power series expansion for $t \mapsto e^t$. Note that the power series converges everywhere on \mathbb{R} and so converges on every compact intervals (on $[-\eta, \eta]$ where $\eta > 0$ in particular). Hence, the (power) series expansion $e^{-t^2} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!}$ also converges uniformly for all compact set. In particular, it converges uniformly on [0, x] for all $x \in \mathbb{R}$. Hence by limit-integral exchange theorems, we have

$$f(x) := \int_0^x e^{-t^2} dt = \int_0^x \sum_{n=0}^\infty \frac{(-1)^n t^{2n}}{n!} dt = \sum_{n=0}^\infty \int_0^x \frac{(-1)^n t^{2n}}{n!} dt = \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} \frac{x^{2n+1}}{n!}$$

for all $x \in \mathbb{R}$ to be the required series expansion.

Common Mistake. One **must** verify every interchange of integrals and limits (even in future courses). Hence you must state the uniform convergence for the power series of e^t on *compact* sets. Note the power series is NOT uniformly converging on \mathbb{R} (try to prove yourself!). A number of you wrote too few for this question.