In the following, unless otherwise specificed, if $f: A \rightarrow \mathbb{R}$ is a bounded function on $A \subset \mathbb{R}$, then we denote $\|f\|_{\infty}:=\sup \{|f(x)|: x \in A\}$.
1 (P. 252 Q12). Show that $\lim _{n} \int_{1}^{2} e^{-n x^{2}} d x=0$
Solution. Write $f_{n}(x):=e^{-n x^{2}}$ for all $x \in[1,2]$. Note that f_{n} is non-negative and decreasing on [1, 2] (e.g. by considering its derivatives). Hence, we have $0 \leq f_{n}(x) \leq f_{n}(1)=e^{-n}$ for all $x \in[1,2]$ and $n \in \mathbb{N}$. It follows clearly that $\left\|f_{n}\right\|_{\infty} \leq e^{-n}$ and so $\lim _{n}\left\|f_{n}\right\|_{\infty}=0$, that is, $f_{n} \rightarrow 0$ uniformly on $[1,2]$. Hence, we have $\lim _{n} \int_{1}^{2} f_{n}(x) d x=\int_{1}^{2} \lim _{n} f_{n}(x) d x=\int_{1}^{2} 0 d x=0$ by the exchange of integrals and limits.
Common Mistake. A number of you claimed the interchange of the limit and integral here by BCT (Bounded Convergence Theorem); this is not suitable as BCT concerns about Lebesgue integrable functions instead of Riemann integrable functions. In particular, this is not suitable in this course.

2 (P. 252 Q14). Let $f_{n}(x):=\frac{n x}{1+n x}$ for $x \in[0,1]$ and $n \in \mathbb{N}$.
i. Show that f_{n} converges non-uniformly to some integrable function f.
ii. Show that $\int_{0}^{1} f(x) d x=\lim _{n} \int_{0}^{1} f_{n}(x) d x$

Solution.

i. We claim that f_{n} converges point-wise to $f=\mathbb{1}_{(0,1]}:=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=1\end{array}\right.$ on $[0,1]$. The case for $x=0$ is clear. Suppose $x \in(0,1]$. Then $f_{n}(x)=\frac{x}{\frac{1}{n}+x} \rightarrow \frac{x}{x}=1$ as $n \in \infty$. Hence the result follows. Next, we show that the convergence is not uniform on $[0,1]$. Take $x_{n}:=\frac{1}{n}$ for all $n \in \mathbb{N}$. Then $f_{n}\left(x_{n}\right)-$ $f\left(x_{n}\right)=\frac{1}{2}-1=\frac{-1}{2}$. Hence, $\left\|f_{n}-f\right\|_{\infty} \geq \frac{1}{2}>0$ for all $n \in \mathbb{N}$. It follows that f_{n} does not converge to f uniformly.
ii. Note that for all $n \in \mathbb{N}$ we have by FTC that

$$
\int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} \frac{n x}{1+n x} d x=\int_{0}^{1} 1-\frac{1}{1+n x} d x=\left[x-\frac{1}{n} \log (1+n x)\right]_{0}^{1}=1-\frac{1}{n} \log (1+n)
$$

Note that $\lim _{n} \frac{1}{n} \log (1+n)=\lim _{n} \frac{1}{1+n}=0$ by the L'Hospital rule on $f(x):=\log (1+x)$ and $g(x):=x$ under the form $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$, followed by the sequential crtieria. Hence, $\lim _{n} \int_{0}^{1} f_{n}(x) d x=1$. Meanwhile, we have $\int_{0}^{1} f(x) d x=\int_{0}^{1} \mathbb{1}_{(0,1]}=1$ clearly. The result follows.

Remark. The non-uniform convergence in part (i) could be done by a 1 -line proof by noting that f is not continuous.

3 (P. 252 Q19). Let $f_{n}(x):=\frac{x}{n}$ for $x \geq 0$ and $n \in \mathbb{N}$.
i. Show that $\left(f_{n}\right)$ is a decreasing sequence of continuous functions that converges to a continuous f.
ii. Show that the convergence is non uniform.

Solution.

i. Note that $\left(f_{n}\right)$ is a sequence of polynomial functions and so is a sequence of continuous functions. Now fix $n \leq m \in \mathbb{N}$. Then $f_{n}(x)=\frac{x}{n} \geq \frac{x}{m}=f_{m}(x)$ for all $x \geq 0$ clearly. It follows that $f_{n} \geq f_{m}$ point-wise. Therefore, $\left(f_{n}\right)$ is a sequence of decreasing function. Finally, $\lim f_{n}(x)=\lim _{n} \frac{x}{n}=0$ for all $x \geq 0$ clearly. Therefore $f(x)=0$ for all $x \geq 0$, which is a continuous function.
ii. Take $x_{n}:=n$ for all $n \in \mathbb{N}$. Then $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|=f_{n}\left(x_{n}\right)=\frac{n}{n}=1>0$ for all $n \in \mathbb{N}$. It follows that the convergence is not uniform.

