MATH 2068: Honours Mathematical Analysis II: Home Test 2 5:00 pm, 08 April 2022

Important Notice:

- The answer paper must be submitted before 09 April 2022 at 5:00 pm.
- ♠ The answer paper MUST BE sent to the CU Blackboard.

 \bigstar The answer paper must include your name and student ID.

Answer ALL Questions

1. (20 points) Let f be a real valued function defined on $[0, +\infty)$. Prove or disprove the following statements:

(i) If
$$\int_0^\infty f(x)dx$$
 and $\lim_{x \to +\infty} f(x)$ both exist, then $\lim_{x \to +\infty} f(x) = 0$
(ii) If $\int_0^\infty f(x)dx$ exists, then $\lim_{x \to +\infty} f(x)$ exists.

2. (30 points)

Recall that a function g is called a C-Lipschitz function for some C > 0 if $|g(x) - g(y)| \le C|x - y|$ for all x, y in its domain.

Now let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded function and $M := \sup_{x \in \mathbb{R}} |f(x)|$. For each $\lambda > 0$ and $x \in \mathbb{R}$, we put

$$\psi_{\lambda}(x) := \inf\{g(x): g \text{ is a } \lambda\text{-Lipschitz function on } \mathbb{R} \text{ and } g \ge f \text{ on } \mathbb{R} \};$$

and $\psi_0(x) = M$ for all $x \in \mathbb{R}$.

Suppose that for each t > 0, there is $\lambda > 0$ such that $\psi_{\lambda}(x) - f(x) < t$ for all $x \in \mathbb{R}$. For each t > 0, set

$$\tau(t) := \inf \{ \lambda > 0 : \psi_{\lambda}(x) - f(x) < t; \forall x \in \mathbb{R} \}$$

and

$$\varphi(x) := \int_0^1 \psi_{\tau(t)}(x) dt \tag{1}$$

for $x \in \mathbb{R}$.

- (i) Show that for each $\lambda > 0$, ψ_{λ} is a λ -Lipschitz function on \mathbb{R} .
- (ii) Show that the improper integral in Eq(1) exists for all $x \in \mathbb{R}$, that is, the function $t \in [c, 1] \mapsto \psi_{\tau(t)}(x)$ is Riemann integrable for all $c \in (0, 1]$ and $\lim_{c \to 0+} \int_{c}^{1} \psi_{\tau(t)}(x) dt$ exists.
- (iii) Show that the function φ is a bounded uniformly continuous function on \mathbb{R} .

*** END OF PAPER ***