MATH 2068: Honours Mathematical Analysis II: Home Test 1
5:00 pm, 04 Mar 2022

Important Notice:

\& The answer paper must be submitted before 05 Mar 2022 at 5:00 pm.
© The answer paper MUST BE sent to the CU Blackboard.
The answer paper must include your name and student ID.

Answer ALL Questions

1. (25 points)

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Let $a, b \in \mathbb{R}$ with $a<b$.
(i) Prove or disprove the following statement: for any $c \in \mathbb{R}$, there are numbers x_{1}, x_{2} with $x_{1}<c<x_{2}$ such that $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)$.
(ii) Suppose that $f^{\prime}(a)<d<f^{\prime}(b)$. Show that there is a point $c \in(a, b)$ such that $f^{\prime}(c)=d$.
(iii) Prove or disprove the following statement: if f^{\prime} is injective, then f^{\prime} is strictly monotone.

2. (25 points)

(i) Let f be a non-constant continuous function defined on $[a, b]$ such that $f(a)=$ $f(b)=0$. Suppose that f^{\prime} exists and is bounded on (a, b). Put $M:=\sup \left\{\left|f^{\prime}(x)\right|\right.$: $x \in(a, b)\}$. Show that $f\left(x^{\prime}\right)<M\left(x^{\prime}-a\right)$ for some $x^{\prime} \in\left[a, \frac{a+b}{2}\right]$ or $f\left(x^{\prime \prime}\right)<M\left(b-x^{\prime \prime}\right)$ for some $x^{\prime \prime} \in\left[\frac{a+b}{2}, b\right]$.
(ii) For each subset A of \mathbb{R}, we put $I_{A}(x):=1$ whenever $x \in A$; otherwise, $I_{A}(x):=0$. Let E be a vector space given by
$\{h:[a, b] \longrightarrow \mathbb{R}: h$ is bounded and has at most finitely many discontinuous points $\}$.
Let $\mu: E \longrightarrow \mathbb{R}$ be a linear function which satisfies the following conditions:
(α) $\mu(h) \geq 0$ for any $h \in E$ with $h \geq 0$, i,e. $h(x) \geq 0$ for all $x \in[a, b]$;
(β) $\mu(\mathbf{1})=1$ where $\mathbf{1}(x)=1$ for all $x \in[a, b]$;
(γ) for any partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$ and for any $h \in E$, we have $\mu(h)=\sum_{k=1}^{n} \mu\left(h \cdot I_{\left[x_{k-1}, x_{k}\right]}\right)$, where $h \cdot I_{\left[x_{k-1}, x_{k}\right]}$ denotes the usual product of functions.
Let f be the function given as in Part (i). Show that there is a point $\xi \in(a, b)$ such that

$$
\frac{1}{b-a} \mu(f)<\left|f^{\prime}(\xi)\right|
$$

