(C) Bernoulli's inequality

If d>1, then $(1+x)^{d} \ge 1+dx$, $\forall x>-1$. with equality $\iff x=0$ ".

Pf: Consider $h(x) = (l+x)^{\alpha}$ on $(-1, +\infty)$, $(l+x>0 \Rightarrow taking root of l+x is well-defined for <math>\alpha \neq uiteger$)

Then $f'(x) = \alpha (1+x)^{\alpha-1}$ on $(-1, +\infty)$ (We've proved this in eg. 6.1.10(d) for vational α , The case of <u>irrational</u> α will be proved in §8.3)

If x>0, applying MVT to h(x) on [0,x], we have CE(0,x) such that

$$\Re(x) - \Re(0) = \Re'(c)(x-0)$$
.

That is $(|+x|^{\alpha} - 1 = \lambda(1+c)^{\alpha-1} \times .$

Since C>0 & d-1>0, we have $(1+C)^{d-1}>1$ $(1+X)^{d}>1+dx$ (The ineq. is strict!) If -1< x < 0, then applying MVT to $f_1(x)$ on [x,0], we have $c \in (x,0)$ such that $f_1(0) - f_1(x) = f_2'(c)(0-x)$

is but

$$1 - (1+X)^{d} = d(1+c)^{d-1}(-x)$$

Since -1< X < C < 0, we have 0 < 1+C < 1 $\Rightarrow (1+C)^{\alpha-1} < 1 \quad (\alpha - 1 > 0)$ $= (1+C)^{\alpha} < 1 \quad (\alpha - 1 > 0)$ That is $(1+x)^{\alpha} > 1+\alpha \times (\text{ineg. is strict!})$

Clearly
$$(1+x)^{d} = 1+\alpha x$$
 for $x=0$.

Therefore $(I+X)^{\times} > I+dX$, $\forall X \in (-1, +\infty)$ and equality $\iff X = 0^{\#}$.

(d) If $0 < \alpha < 1$, then $\forall a > 0 \neq b > 0$, we have $a^{\alpha} b^{1-\alpha} \leq \alpha a + (1-\alpha)b.$ with "equality $\iff a = b$ ".

(Note: fa d=t, we have $\sqrt{ab} < \frac{a+b}{2}$)

Pf: Consider
$$g(x) = dx - x^{\alpha}$$
 for $x \ge 0$.
Then $g(x) = d - dx^{\alpha - 1} = d(1 - x^{-(1 - d)})$ (0\Rightarrow g(x) \begin{cases} < 0 & \text{fn} \quad 0 < X < 1 \\ > 0 & \text{fn} \quad 1 < X \end{cases}
Hence $g(x) \ge g(1)$, $\forall x \ge 0$ and $g(x) = g(1) \Leftrightarrow x = 1$.

That
$$\dot{\omega}$$
, $dx - x^{d} \ge d - 1$ or $x^{\alpha} \le dx + (1 - d)$, $\forall x \ge 0$

with "equality (=> X=1".

Now for a>0, b>0, put $x=\frac{a}{b}>0$ into the ineq., we have $\frac{a^{d}}{b^{\infty}} \leq \frac{da}{b} + (1-a)$

$$\Rightarrow \qquad Q_{\alpha} p_{1-\alpha} < \alpha + (1-\alpha)p \qquad \times$$

Intermediate Value Property of Derivatives (Darboux's Thm)

Lemma 6.2.11 Let . I be an interval and CEI.

· f: [> R and f'(c) exists.

Then

(a) If f'(c)>0, then $\exists \delta > 0$ st.

 $f(x) > f(c) \forall x \in (c, c+\delta) \cap I$

(b) If f(c)<0, then I 5>0 s.t.

f(x) > f(c) for $x \in (c-\delta, c) \cap I$

-- TT -- C-5 X C

Pf: (a) Since
$$\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = f(c)>0$$
, (Thm 4.2.9 of the textbook, MATH 2050)

 $\exists \delta > 0 \text{ s.t. } \frac{f(x) - f(c)}{x - c} > 0, \forall x \in (c - \delta, c + \delta) \cap I$

: f(x)-f(c)>0, 4 × ∈(c, c+δ) ∩ I.

(b) Applying (a) to -f.

Thm 6.2.12 (Darboux's Thm)

If · f is differentiable on [a,b]

· k is a number between f(a) and f(b), (f/a) + f(b)

then $\exists C \in (a,b)$ such that

$$f(c) = k$$

Romark: No continuity of I is assumed. Hence the usual) Intermodiate Value Thru of continuous function doesn't apply.

Pf: Suppose f'(a) < f'(b) and f'(a) < k < f'(b).

Define g(x) = kx - f(x), $\forall x \in [a,b]$

Then & different able >

9 is differentiable & home continuous on Ta, b]

In particular, 9 attains a maximum value on [a,b].

Note that $g(\alpha) = k - f(\alpha) > 0$.

By Lemma 6.2.11, ± 5>0 St.

g(x) > g(a), $\forall x \in (a, a+\delta) \cap [a,b]$.

i, a is not the maximum of g

Also g(b) = k - f(b) < 0, lemma 6.2.11 implies

35>0 s.t. g(x)> g(b), Y XE(b-5, b) n[a,b].

-: b is not the maximum of g.

Togethor >> 9 attains its maximum at au interior point CE (a,b).

Then Interior Extremum Thru (Thru 6.2.1) implies 0 = g(c) = k - f(c).

If f(b) (f(a), consider (-f) and we can find similarly a CE(a,b) st. f(c)=k.

Eg 6.2.13 The signum function g(x) = sgn(x) restricted on [-1,1]:

$$g(x) = \begin{cases} 1 & 0 < x \le 1 \\ 0 & x = 0 \\ -1 & -1 \le x < 0 \end{cases}$$

doesn't satisfy the intermediate value property,

 $(1=g(1), -1=g(-1), e -1<\frac{1}{2}<1; but no x \in (-1,1)$ s.t. $g(x)=\frac{1}{2}$.

Therefore $g(x) \neq f'(x)$ for any differentiable function f on [-1, 1].

(i.e. The differential eqt $\frac{df}{dx} = 9$ has no solution on [-1,1])