Ch6 Differentiation

\$6.1 The Derivative

Def 6.1.1 • let • I
$$\subseteq$$
 R be an interval
• $f: I \rightarrow R$ a function on I
• $c \in I$.
We say that $L \in R$ is the derivative of f at c
if $\forall \epsilon > 0$, $\exists \delta(\epsilon) > 0$ such that
 $\left| \frac{f(x) - f(c)}{x - c} - L \right| < \epsilon$, $\forall x \in I$ with $0 < |x - c| < \delta(\epsilon)$.
• In this case we say that f is differentiable at c, and
we write $\underline{-f(c)} = L$.

Remark: If livit exists, $f(c) = \lim_{X \to c} \frac{f(x) - f(c)}{x - c}$ • c may be the endpoint of I (if I is "closed" at c) then live means $\lim_{X \to c} \lim_{X \to c} \lim_{X \to c} \int_{X \to c$

eg
$$f: (-\infty, \infty) \rightarrow \mathbb{R}$$

 $x \mapsto f(x) = |x|$
Then $f': (-\infty, 0) \cup (0, \infty) \rightarrow \mathbb{R}$ given by
 $f(x) = \begin{cases} 1 & , & x \in (0, \infty) \\ -1 & , & x \in (-\infty, 0) \end{cases}$ and
 $f(0)$ doesn't exist (i.e. $|x|$ is not differentiable at $x=0$)
PS: For $c > 0$, then

For
$$C < 0$$
, then

$$\lim_{X \to C} \frac{f(x) - f(c)}{x - c} = \lim_{X \to C} \frac{|X| - |c|}{x - c} = \lim_{X \to C} \frac{-x + c}{x - c}$$

$$= \lim_{X \to C} -1 = -1 \qquad (as x < 0)$$

$$= \max (< 0)$$

For C=0, then

$$\lim_{X \to 0} \frac{f(x) - f(c)}{x - c} = \lim_{X \to 0} \frac{|x|}{x} \text{ doesn't exist}$$
Since the two one-sided limits are not equal:

$$\lim_{X \to 0^+} \frac{|x|}{x} = \lim_{X \to 0^+} \frac{-x}{x} = -1 \neq 1 = \lim_{X \to 0^+} \frac{x}{x} = \lim_{X \to 0^+} \frac{|x|}{x}$$

Note: The same argument show that for
$$f(x) = x$$
, $x \in \mathbb{R}$,
f is differentiable $\forall x \in \mathbb{R}$ and
 $f'(x) = 1$, $\forall x \in \mathbb{R}$.

Thun 6.1.2 (Same notations as in Ref 6.1.1)
If
$$f: I \rightarrow \mathbb{R}$$
 that a derivative at $C \in I$ (i.e. differentiable at c),
then f is cartinuous at C .

Pf: For XEI & X+C, we have

$$f(x) - f(c) = \frac{f(x) - f(c)}{x - c} \cdot (x - c)$$

$$f(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x \to c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} (x - c)$$

$$= f'(c) \cdot 0 = 0$$
Hence $\lim_{x \to c} f(x) = f(c) \quad \therefore f \text{ is continuous at } c.$

- Remarks: Previous eg f(x)=1x1 clearly shows that the <u>converse</u> of Thm 6,1.2 is not true (i.e. containance at c >> differentiable at c)
 - In fact, there exist <u>containons but nowhere differentiable</u> functions
 (will be proved in MATH 3060 .)

Thun 6.1.3 (Same notations as in Def. 6.1,1)
let
$$5: I \Rightarrow \mathbb{R} \ge g: I \Rightarrow \mathbb{R}$$
 be functions that are differentiable
at CEI. Then
(a) If dETR, the function of is also differentiable at c, and
(afs(c) = af(c)
(b) The function f+g is differentiable at c, and
(f+g)(c) = f(c) + g(c)
(c) (Product Rule) The function fg is differentiable at c, and
(fg)(c) = f'(c)g(c) + f(c)g(c)
(d) (Austient Rule) If $g(c) \neq 0$, then the function $\frac{f}{g}$ is
differentiable at c, and
($\frac{f}{g}$)(c) = $\frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$

(Pfs are easy, just using suitable algebraic expressions and taking limits, we just do the <u>Quotient Rule</u> here as example, you should do others by yourself.) <u>Pf of (d)</u>:

• Thm 6.1.2 implies that g is continuous at c (as gibdiff. at c) • Then $g(c) \neq 0 \Rightarrow$ there exists an interval $J \subseteq I$ with $c \in J$ such that $g(x) \neq 0, \forall x \in J$. (Thm 4.2.9 of the text book, MATH2050) • $g = \frac{f}{g}$ is well-defined function on J and $\forall x \in J, x \neq c$, we have $\frac{g(x) - g(c)}{x - c} = \frac{\frac{f(x)}{g(c)}}{\frac{g(x)}{g(c)}(x - c)} = \frac{f(x)g(c) - f(c)g(x)}{g(x)g(c)(x - c))}$

$$= \frac{(f(x) - f(c))g(c) - f(c)(g(x) - g(c))}{g(x)g(c)(x - c)}$$

$$= \frac{1}{g(x)g(c)} \cdot \left[\frac{f(x) - f(c)}{x - c} \cdot g(c) - f(c) \cdot \frac{g(x) - g(c)}{x - c} \right]$$

5, g differentiable at
$$c \Rightarrow \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f(c)$$

$$\lim_{x \to c} \frac{g(x) - g(c)}{x - c} = g(c)$$

$$\lim_{x \to c} g(x) = g(c)(\neq 0)$$

 $\therefore \quad \lim_{x \to c} \frac{g(x) - g(c)}{x - c} \quad \text{exists and} \\ g'(c) = \frac{1}{g(c)^2} \left[f(c)g(c) - f(c) g(c) \right]_{X}$

Cor 6.1.4 If
$$f_1, \dots, f_n$$
 are functions on an interval I to R
that are differentiable at $c \in I$, then
(a) The function $f_1 + \dots + f_n$ is differentiable at c , and
 $(f_1 + \dots + f_n)'(c) = f'_1(c) + \dots + f'_n(c)$
(b) The function $f_1 - \dots + f_n$ is differentiable at c , and
 $(f_1 - \dots + f_n)'(c) = f'_1(c) f_2(c) - \dots + f_n(c) + f_1(c) f_2(c) - \dots + f_n(c) + \dots + f_n(c) + f_n(c))$
 $+ \dots + f_n(c) f_2(c) - \dots + f'_n(c)$

PS: Just by induction using Thm 6.1.3. *

Remark: Quotient rule (Thurb. 1.3(ds) together with (b) in Gor 6.1.4

$$\implies (x^n) = nx^{n-1}, \forall n \in \mathbb{Z} \quad (\forall x \neq 0 \ \mathcal{U} \quad n < 0)$$

$$\frac{Pf}{f_{n}}: Applying (b) in Cor6.14 to the case that
f_1 = ... = f_n = f (differentiable),
then $(f^n)' = (f \dots f)' = f'f \dots f + ff' \dots f + f \dots f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' \cdot f' + \dots + f \cdot f \cdot f' + \dots + f'$$$

We've proved that (X)' = 1, and have $(X'')' = n \cdot X''' \cdot 1 = n \cdot x'''$

If
$$N=0$$
, then $f(x) = x^{\circ} = 1 \Rightarrow f(c) = \lim_{X \to c} \frac{f(x) - f(c)}{x - c} = 0$, $\forall c$
 $\vdots, (x^{\circ}) = 0 = 0 \cdot x^{-1}$

(Note: strictly speaking, the RHS is not defined at x=0, but we may interpret the expression nx^{n-1} for n=0 as the continuous extension of to the whole \mathbb{R})

If
$$n = -m < 0$$
 $(m > 0)$, then for $x \neq 0$,
 $(x^{n})' = (\frac{1}{x^{m}})' = -\frac{(x^{m})'}{(x^{m})^{2}}$ by Quotient rule
 $= -\frac{mx^{m-1}}{(x^{m})^{2}} = (-m) \cdot x^{(m)-1} = n x^{n-1}$ (for $x \neq 0$)

 $\frac{Thm 6.1.5}{f} \left(\frac{Carathéodory's Thm}{f}\right) (Same notations as in Def 6.1.1)$ f is differentiable at c $\iff \exists \ 9:I > R \ continuous at c \ such that \ f(x) - f(c) = 9(x)(x-c), \forall x \in I.$ In this case, 9(c) = f(c) $Pf: (=>) \ If \ f(c) \ exists, \ define \ 9: I > R \ by \ 9(x) = \int \frac{f(x) - f(c)}{x - c}, \ x \neq c, \ x \in I \ -f(c), \ x = c.$

$$(\Leftarrow) \quad \text{If } \exists \ \ensuremath{P}: \ensuremath{I} \Rightarrow \ensuremath{R} \ \ensuremath{continuous}\ \ensuremath{\text{ot}}\ \ensuremath{C} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{C} \ \ensuremath{S} \ \ensuremath{S} \ \ensuremath{C} \ \ensuremath{S} \ \ensuremath$$

$$\begin{array}{l} \underline{eg}: \quad f(x) = x^{3} : (-\infty, \infty) \Rightarrow \mathbb{R} \\ \\ \text{Then} \qquad f(x) - f(c) = \ x^{3} - c^{3} = (x^{2} + cx + c^{2})(x - c) \\ \\ = \ \varphi(x)(x - c) \\ \\ \text{where} \quad (\varphi(x) = x^{2} + cx + c^{2}) \quad \hat{o} \quad \text{cartaines at } c \quad \text{and} \\ \\ \varphi(c) = \ 3c^{2} = f(c) \, . \end{array}$$

Thm 6.1.6 (Chair Rule)
Let
$$\cdot I, J$$
 be intervals in \mathbb{R} ,
 $\cdot g: I \rightarrow I\mathbb{R}$
 $\cdot f: J \rightarrow I\mathbb{R}$ with $f(J) \subseteq I$ (many just assume $f: J \rightarrow I$)
 $\cdot c \in J$.
If f is differentiable at c and g is differentiable at $f(c)$,
then the composite function $g \circ f$ is differentiable at c and
 $(g \circ f)(cc) = g'(f(cs)) f(c)$.

Other notations for
$$f' : Df or \frac{df}{dx}$$
 (when x is the indep variable)
The famula can be written as $(g \circ f)' = (g' \circ f) \cdot f'$ or
 $D(g \circ f) = (Dg \circ f) \cdot Df$

Pf: Since f(c) exists, Carathéodory's Thm 6.1.5 ⇒ ∃ φ: J → IR continuous at c such that f(x) - f(c) = φ(x)(x-c), ∀ x ∈ J and φ(c) = f(c). Denote f(c) = d, then g(d) exists (similarly reasoning) ⇒ ∃ 4 = I → IR continuous at d such that

$$g(y) - g(d) = f(y)(y - d) \quad \forall y \in I$$

and $f(d) = g(d)$.
For XEJ, substituting $y = f(x) & d = f(c)$, we have
 $g(f(x)) - g(f(c)) = f(f(x))(f(x) - f(c))$
 $\therefore g_0 f(x) - g_0 f(c) = f(f(x))g(x)(x - c)$
 $= [(f_0 f)(x)g(x)(x - c), \forall x \in J)$
Since f diff. at c , f is cartinans at c .
Together with f is cartinans at $f(c) = d$, we have
 $f \circ f$ is cartinans at $f(c) = d$, we have
 $f \circ f$ is cartinans at c .
Therefore $(f \circ f)(x)g(x)$ is curtainans at c .
Therefore $(f \circ f)(x)g(x)$ is curtainans at c .
Therefore $(f \circ f)(x)g(x)$ is curtainans at c .
 $g \circ f$ is differentiable at c by Carathéodony's Thus
and $(g \circ f)'(c) = (f \circ f)(c)g(c) = f(d)f(c) = g(d)f(c)$
 $= g'(f(c))f(c)$.

Note: By using Carathéodory's Thu 6.1.5, we avoided the discussion
of whether
$$f(x) - f(c) = 0$$
 as in the usual proof by
the algebraic expression
$$\frac{g(f(x)) - g(f(c))}{x - c} = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$

eg 6.1.7 Let
$$f: I > \mathbb{R}$$
 is differentiable on I (ie at all points of I)
(a) Chair rule (albo) \Rightarrow (f^n)(x) = n ($f(x)$)ⁿ⁺¹ f(x)
(b) If further assume $f(x) \neq 0$, $\forall x \in I$, (middle in textbook, $f' \neq 0$,
(f')(x) = $-\frac{f(x)}{(f(x))^2}$, $\forall x \in I$
by using $g(y) = \frac{1}{2}$ for $y \neq 0$ and $g(y) = -\frac{1}{2^2}$, $\forall y \neq 0$.
(c)
 $If(x) = Sgn(f(x)) \cdot f(x) = \begin{cases} f(x) , & if f(x) > 0 \\ -f(x) , & if f(x) < 0 \end{cases}$
(where $Sgn(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$
Ef: (ansider $g(x) = iXI$. Then $g: (-\infty, \infty) \rightarrow iR$
and we've proved that g is differentiable at $x \neq 0$.
 $g'(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$
For $x \neq 0$, $g'(x) = Agn(x)$
(but $g' \neq Agn$ at $x=0$, because $g(0)$ doesn't exist)
Therefore, by chain rule,
 $(f)(x) \in differentiable at x where $f(x) \neq 0$$

and
$$|f|'(x) = g'(f(x)) f'(x) = Agn(f(x)) f(x)$$

= $\begin{cases} f'(x) , f(x) > 0 \\ -f'(x) , f'(x) < 0 \\ \\ \\ \end{cases}$

(At x where f(x)=0, the situation is more complicated is (i) if $f(x)=x^2$, then $|f|(x)=x^2$ is differentiable also at x=0(ii) if f(x)=x, then |f|(x)=|x| is not differentiable at x=0See exercise F of \$6.1 or page 171 of the text book.)

Concrete example:
$$f(x) = x^2 - 1$$
, then $f(x) = 0 \Leftrightarrow x = \pm 1$.
.'. $|f|(x) = |x^2 - 1|$ is differentiable for $x \neq \pm 1$ and

$$\frac{d}{dx}|x^{2}-1| = |f|(x) = Agh(x^{2}-1) \cdot 2x = \begin{cases} 2x , i \in x < -1 \\ -2x , i \in -1 < x < 1 \\ -2x , i \in -1 < x < 1 \end{cases}$$

(d) Derivatives of trigonometric functions.
Let
$$S(x) = A \tilde{u} x$$
, $C(x) = Co x$ for $x \in \mathbb{R}$.
We'll define these two functions and prove the following

later in section 8,4:

$$S'(x) = con x = C(x)$$
, $C'(x) = -ain x = -S(x)$,

Using these facts & quotent rule, we have the funnela
for derivatives of other trigonometric functions:
$$D \tan x = (\sec x)^2$$
 } for $x \neq (\frac{2k+1}{2})T$, be Z
 $D \sec x = (\sec x)(\tan x)$ } for $x \neq kT$, $k \in \mathbb{Z}$
 $D \cot x = -(\csc x)^2$ } for $x \neq kT$, $k \in \mathbb{Z}$
 $D \csc x = -(\csc x)((\cot x))$

(e)
$$f(x) = \int x^2 a \tilde{u}(x) f x x \neq 0$$

 $o f x = 0$.
By Chain rule, (product rule & guotient rule,) for $x \neq 0$
 $f'(x) = 2x s \tilde{u}(x) - cos(x)$ (check!)

But at
$$X=0$$
, we must use definition of derivative to
find $f(0) = \lim_{\substack{X \ge 0 \\ (X \neq 0)}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{X \ge 0 \\ (X \neq 0)}} \frac{x^2 \sinh(x)}{x} = \lim_{\substack{X \ge 0 \\ (X \neq 0)}} x \sinh(x) = 0$
 $f(x) = \lim_{\substack{X \ge 0 \\ (X \neq 0)}} x hold x \in \mathbb{R}$ and

$$f(x) = \begin{cases} 2x \operatorname{sur}(\frac{1}{x}) - \operatorname{co}(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- f differentrable XX \not f is containans.)

