MATH2060 Solution 1

January 2022

6.1 Q4

 $\forall \varepsilon > 0, \, \text{take} \, \, \delta = \varepsilon, \, \text{for} \, \, 0 < |x| < \delta, \, \text{if} \, \, x \in \mathbb{Q}, \, \text{then}$

$$\frac{f(x) - f(0)}{x - 0} - 0 \bigg| = \bigg| \frac{x^2 - 0}{x - 0} - 0 \bigg| = |x| < \varepsilon;$$

if $x \notin \mathbb{Q}$, then

$$\left|\frac{f(x) - f(0)}{x - 0} - 0\right| = \left|\frac{0 - 0}{x - 0} - 0\right| = 0 < \varepsilon$$

Therefore, f is differentiable at x = 0, and f'(0) = 0.

6.1 Q10

Let $g_1(x) = x^2$, $f(x) = \frac{1}{x^2}$, $h(x) = \sin x$, then $g(x) = g_1(x) \cdot (h \circ f)(x)$. First, for $x \neq 0$, f is differentiable at x, and h is differentiable at f(x). By the chain rule, $h \circ f$ is differentiable at x. Since g_1 and $h \circ f$ are both differentiable at x, then by the product rule, $g_1 \cdot (h \circ f)$ is differentiable at x. And

$$g'(x) = g'_1(x) \cdot (h \circ f)(x) + g_1(x) \cdot (h \circ f)'(x)$$

= $g'_1(x) \cdot (h \circ f)(x) + g_1(x)h'(f(x))f'(x)$
= $2x \sin \frac{1}{x^2} + x^2 \cos \frac{1}{x^2} \cdot (-\frac{2}{x^3})$
= $2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}$

Second, for $x = 0, \forall \varepsilon > 0$, take $\delta = \varepsilon$, then for $0 < |x| < \delta$, we have

$$\frac{g(x) - g(0)}{x - 0} - 0 \bigg| = \bigg| \frac{x^2 \sin \frac{1}{x^2} - 0}{x - 0} \bigg| = \bigg| x \sin \frac{1}{x^2} \bigg| \le |x| < \varepsilon$$

This shows $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = 0$. Take a sequence $\{x_n\}_n$ with $x_n = \frac{1}{\sqrt{2\pi n}}$, $n \in \mathbb{N}$. Clearly, $x_n \in [-1, 1]$, $\forall n \in \mathbb{N}$. Then

$$g'(x_n) = \frac{2}{\sqrt{2\pi n}} \sin 2\pi n - 2\sqrt{2\pi n} \cos 2\pi n = -2\sqrt{2\pi n}.$$

 $\forall M > 0$, set $N = \left[\frac{M^2}{8\pi}\right] + 1$, then $\forall n \ge N$, $|g'(x_n)| = |-2\sqrt{2\pi n}| \ge M$. It shows g' is not bounded on the interval [-1, 1].

6.1 Q15

Denote the function f and g repectively by $f = \cos : [0,\pi] \to [-1,1]$ and $g = \arccos : [-1,1] \to [0,\pi]$. For $x \in (0,\pi)$, let $y = \cos x$, since f(x) is differentiable at x, and $f'(x) = \sin(x) \neq 0$, then by Theorem 6.1.8 in the textbook, we have

$$\arccos y = \frac{1}{(\cos x)'} = -\frac{1}{\sin x} = -\frac{1}{\sqrt{1 - \cos^2 x}} = -\frac{1}{\sqrt{1 - y^2}}$$

where $y \in (-1, 1)$. For y = 1, then $g(1) = \arccos 1 = 0$, and $f'(0) = \cos'(0) = 0$. Suppose $g = \arccos$ is differentiable at y = 1. Since $g \circ f(x) = x$, $x \in [0, \pi)$, then by the chain rule, we get g'(f(0))f'(0) = 1. However, f'(0) = 0, which leads to a contradiction.

Therefore, $g = \arccos$ is not differentiable at y = 1. For the case y = -1, we apply the similar argument.

6.2 Q9

For $x \neq 0$, note that $\sin \frac{1}{x} \geq -1$, then

$$f(x) = 2x^4 + x^4 \sin \frac{1}{x} \ge 2x^4 - x^4 = x^4 \ge 0$$

Since f(0) = 0, then f has an absolutely minimum at x = 0. For $x \neq 0$, we can get

$$f'(x) = 8x^3 + 4x^3 \sin\frac{1}{x} - x^2 \cos\frac{1}{x}$$
$$= x^2 \left(8x + 4x \sin\frac{1}{x} - \cos\frac{1}{x}\right)$$

Take a sequence $\{x_n\}_{n\in\mathbb{N}}$ with $x_n = \frac{1}{\pi n}$, $n \in \mathbb{N}$. Then

$$f'(x_n) = \left(\frac{1}{\pi n}\right)^2 \left(\frac{8}{\pi n} + \frac{4}{\pi n}\sin\pi n - \cos\pi n\right)$$
$$= \left(\frac{1}{\pi n}\right)^2 \left(\frac{8}{\pi n} - (-1)^n\right)$$

For any neighbourhood V of 0, without loss of generality, we consider the case $V = (-\delta, \delta)$, for some $\delta > 0$. We set $N = \max\{[\frac{1}{\pi\delta}] + 1, [\frac{8}{\pi}] + 1\}$, then $\forall n \ge N$,

 $x_n=\frac{1}{\pi n}\in V=(-\delta,\delta).$ And if we take some $n_1,$ such that $n_1\geq N$ and let n_1 be even, then

$$f'(x_{n_1}) = \left(\frac{1}{\pi n_1}\right)^2 \left(\frac{8}{\pi n_1} - (-1)^{n_1}\right) = \left(\frac{1}{\pi n_1}\right)^2 \left(\frac{8}{\pi n_1} - 1\right) < 0$$

On the other hand, if we take some n_2 , such that $n_2 \ge N$ and let n_2 be odd, then

$$f'(x_{n_2}) = \left(\frac{1}{\pi n_2}\right)^2 \left(\frac{8}{\pi n_2} - (-1)^{n_2}\right) = \left(\frac{1}{\pi n_2}\right)^2 \left(\frac{8}{\pi n_2} + 1\right) > 0$$

Therefore, f' has both positive and negative values in V.

6.2 Q10

 $\forall \varepsilon > 0$, take $\delta = \frac{\varepsilon}{2}$, then for $0 < |x| < \delta$,

$$\left|\frac{g(x) - g(0)}{x - 0} - 1\right| = \left|\frac{x + 2x^2 \sin\frac{1}{x} - 0}{x - 0} - 1\right| = \left|2x \sin\frac{1}{x}\right| \le |2x| < \varepsilon$$

It shows g'(0) = 1. For $x \neq 0$, we have

$$g'(x) = 1 + 4x \sin \frac{1}{x} + 2x^2 \cos \frac{1}{x} \left(-\frac{1}{x^2}\right)$$
$$= 1 + 4x \sin \frac{1}{x} - 2 \cos \frac{1}{x}$$

Take a sequence $\{x_n\}_{n\in\mathbb{N}}$ with $x_n = \frac{1}{\pi n}, n \in \mathbb{N}$. Then

$$g'(x_n) = 1 + \frac{4}{\pi n} \sin \pi n - 2 \cos \pi n = 1 - 2 \cdot (-1)^n$$

For any neighbourhood V of the point 0, without loss of generality, we consider the case $V = (-\delta, \delta)$, for some $\delta > 0$. Set $N = \begin{bmatrix} \frac{1}{\pi\delta} \end{bmatrix} + 1$, then $\forall n \ge N$, $x_n \in V = (-\delta, \delta)$. If $n \ge N$, and n is even, then $g'(x_n) = 1 - 2 = -1 < 0$; if $n \ge N$, and n is odd, then $g'(x_n) = 1 - 2 \cdot (-1) = 3 > 0$. Therefore, g' takes on both positive and negative values in V.

6.2 Q13

Take $a, b \in I$, and a < b. Since I is an interval, then $[a, b] \subset I$. Clearly, f is differentiable on (a, b) and f is continuous on [a, b]. By Mean Value Theorem, there exists $c \in (a, b)$, such that

$$f(b) - f(a) = f'(c)(b - a)$$

Since $c \in I$, then f'(c) > 0, implying that f(b) - f(a) > 0. Then f is strictly increasing on I.