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6.1 Q4

∀ε > 0, take δ = ε, for 0 < |x| < δ, if x ∈ Q, then∣∣∣∣f(x)− f(0)

x− 0
− 0

∣∣∣∣ = ∣∣∣∣x2 − 0

x− 0
− 0

∣∣∣∣ = |x| < ε;

if x /∈ Q, then ∣∣∣∣f(x)− f(0)

x− 0
− 0

∣∣∣∣ = ∣∣∣∣ 0− 0

x− 0
− 0

∣∣∣∣ = 0 < ε

Therefore, f is differentiable at x = 0, and f ′(0) = 0.

6.1 Q10

Let g1(x) = x2, f(x) = 1
x2 , h(x) = sinx, then g(x) = g1(x) · (h ◦ f)(x).

First, for x ̸= 0, f is differentiable at x, and h is differentiable at f(x).
By the chain rule, h ◦ f is differentiable at x. Since g1 and h ◦ f are both
differentiable at x, then by the product rule, g1 · (h ◦ f) is differentiable at x.
And

g′(x) = g′1(x) · (h ◦ f)(x) + g1(x) · (h ◦ f)′(x)
= g′1(x) · (h ◦ f)(x) + g1(x)h

′(f(x))f ′(x)

= 2x sin
1

x2
+ x2 cos

1

x2
· (− 2

x3
)

= 2x sin
1

x2
− 2

x
cos

1

x2

Second, for x = 0, ∀ε > 0, take δ = ε, then for 0 < |x| < δ, we have∣∣∣∣g(x)− g(0)

x− 0
− 0

∣∣∣∣ = ∣∣∣∣x2 sin 1
x2 − 0

x− 0

∣∣∣∣ = ∣∣∣∣x sin 1

x2

∣∣∣∣ ≤ |x| < ε

This shows limx→0
g(x)−g(0)

x−0 = 0. Take a sequence {xn}n with xn = 1√
2πn

,

n ∈ N. Clearly, xn ∈ [−1, 1], ∀n ∈ N. Then

g′(xn) =
2√
2πn

sin 2πn− 2
√
2πn cos 2πn = −2

√
2πn.
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∀M > 0, set N = [M
2

8π ] + 1, then ∀n ≥ N , |g′(xn)| = | − 2
√
2πn| ≥ M . It shows

g′ is not bounded on the interval [−1, 1].

6.1 Q15

Denote the function f and g repectively by f = cos : [0, π] → [−1, 1] and
g = arccos : [−1, 1] → [0, π]. For x ∈ (0, π), let y = cosx, since f(x) is
differentiable at x, and f ′(x) = sin(x) ̸= 0, then by Theorem 6.1.8 in the
textbook, we have

arccos y =
1

(cosx)′
= − 1

sinx
= − 1√

1− cos2 x
= − 1√

1− y2

where y ∈ (−1, 1). For y = 1, then g(1) = arccos 1 = 0, and f ′(0) = cos′(0) = 0.
Suppose g = arccos is differentiable at y = 1. Since g ◦ f(x) = x, x ∈ [0, π),
then by the chain rule, we get g′(f(0))f ′(0) = 1. However, f ′(0) = 0, which
leads to a contradiction.

Therefore, g = arccos is not differentiable at y = 1. For the case y = −1, we
apply the similar argument.

6.2 Q9

For x ̸= 0, note that sin 1
x ≥ −1, then

f(x) = 2x4 + x4 sin
1

x
≥ 2x4 − x4 = x4 ≥ 0

Since f(0) = 0, then f has an absolutely minimum at x = 0. For x ̸= 0, we can
get

f ′(x) = 8x3 + 4x3 sin
1

x
− x2 cos

1

x

= x2

(
8x+ 4x sin

1

x
− cos

1

x

)
Take a sequence {xn}n∈N with xn = 1

πn , n ∈ N. Then

f ′(xn) =

(
1

πn

)2 (
8

πn
+

4

πn
sinπn− cosπn

)
=

(
1

πn

)2 (
8

πn
− (−1)n

)
For any neighbourhood V of 0, without loss of generality, we consider the case
V = (−δ, δ), for some δ > 0. We set N = max{[ 1

πδ ] + 1, [ 8π ] + 1}, then ∀n ≥ N ,
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xn = 1
πn ∈ V = (−δ, δ). And if we take some n1, such that n1 ≥ N and let n1

be even, then

f ′(xn1
) =

(
1

πn1

)2 (
8

πn1
− (−1)n1

)
=

(
1

πn1

)2 (
8

πn1
− 1

)
< 0

On the other hand, if we take some n2, such that n2 ≥ N and let n2 be odd,
then

f ′(xn2) =

(
1

πn2

)2 (
8

πn2
− (−1)n2

)
=

(
1

πn2

)2 (
8

πn2
+ 1

)
> 0

Therefore, f ′ has both positive and negative values in V .

6.2 Q10

∀ε > 0, take δ = ε
2 , then for 0 < |x| < δ,∣∣∣∣g(x)− g(0)

x− 0
− 1

∣∣∣∣ = ∣∣∣∣x+ 2x2 sin 1
x − 0

x− 0
− 1

∣∣∣∣ = ∣∣∣∣2x sin 1

x

∣∣∣∣ ≤ |2x| < ε

It shows g′(0) = 1. For x ̸= 0, we have

g′(x) = 1 + 4x sin
1

x
+ 2x2 cos

1

x
(− 1

x2
)

= 1 + 4x sin
1

x
− 2 cos

1

x

Take a sequence {xn}n∈N with xn = 1
πn , n ∈ N. Then

g′(xn) = 1 +
4

πn
sinπn− 2 cosπn = 1− 2 · (−1)n

For any neighbourhood V of the point 0, without loss of generality, we consider
the case V = (−δ, δ), for some δ > 0. Set N = [ 1

πδ ] + 1, then ∀n ≥ N ,
xn ∈ V = (−δ, δ). If n ≥ N , and n is even, then g′(xn) = 1 − 2 = −1 < 0; if
n ≥ N , and n is odd, then g′(xn) = 1− 2 · (−1) = 3 > 0. Therefore, g′ takes on
both positive and negative values in V .

6.2 Q13

Take a, b ∈ I, and a < b. Since I is an interval, then [a, b] ⊂ I. Clearly, f is
differentiable on (a, b) and f is continuous on [a, b]. By Mean Value Theorem,
there exists c ∈ (a, b), such that

f(b)− f(a) = f ′(c)(b− a)

Since c ∈ I, then f ′(c) > 0, implying that f(b) − f(a) > 0. Then f is strictly
increasing on I.
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