MATH2060 Solution 1

January 2022

6.1 Q4

$\forall \varepsilon>0$, take $\delta=\varepsilon$, for $0<|x|<\delta$, if $x \in \mathbb{Q}$, then

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|=\left|\frac{x^{2}-0}{x-0}-0\right|=|x|<\varepsilon
$$

if $x \notin \mathbb{Q}$, then

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|=\left|\frac{0-0}{x-0}-0\right|=0<\varepsilon
$$

Therefore, f is differentiable at $x=0$, and $f^{\prime}(0)=0$.

6.1 Q10

Let $g_{1}(x)=x^{2}, f(x)=\frac{1}{x^{2}}, h(x)=\sin x$, then $g(x)=g_{1}(x) \cdot(h \circ f)(x)$.
First, for $x \neq 0, f$ is differentiable at x, and h is differentiable at $f(x)$. By the chain rule, $h \circ f$ is differentiable at x. Since g_{1} and $h \circ f$ are both differentiable at x, then by the product rule, $g_{1} \cdot(h \circ f)$ is differentiable at x. And

$$
\begin{aligned}
g^{\prime}(x) & =g_{1}^{\prime}(x) \cdot(h \circ f)(x)+g_{1}(x) \cdot(h \circ f)^{\prime}(x) \\
& =g_{1}^{\prime}(x) \cdot(h \circ f)(x)+g_{1}(x) h^{\prime}(f(x)) f^{\prime}(x) \\
& =2 x \sin \frac{1}{x^{2}}+x^{2} \cos \frac{1}{x^{2}} \cdot\left(-\frac{2}{x^{3}}\right) \\
& =2 x \sin \frac{1}{x^{2}}-\frac{2}{x} \cos \frac{1}{x^{2}}
\end{aligned}
$$

Second, for $x=0, \forall \varepsilon>0$, take $\delta=\varepsilon$, then for $0<|x|<\delta$, we have

$$
\left|\frac{g(x)-g(0)}{x-0}-0\right|=\left|\frac{x^{2} \sin \frac{1}{x^{2}}-0}{x-0}\right|=\left|x \sin \frac{1}{x^{2}}\right| \leq|x|<\varepsilon
$$

This shows $\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=0$. Take a sequence $\left\{x_{n}\right\}_{n}$ with $x_{n}=\frac{1}{\sqrt{2 \pi n}}$, $n \in \mathbb{N}$. Clearly, $x_{n} \in[-1,1], \forall n \in \mathbb{N}$. Then

$$
g^{\prime}\left(x_{n}\right)=\frac{2}{\sqrt{2 \pi n}} \sin 2 \pi n-2 \sqrt{2 \pi n} \cos 2 \pi n=-2 \sqrt{2 \pi n}
$$

$\forall M>0$, set $N=\left[\frac{M^{2}}{8 \pi}\right]+1$, then $\forall n \geq N,\left|g^{\prime}\left(x_{n}\right)\right|=|-2 \sqrt{2 \pi n}| \geq M$. It shows g^{\prime} is not bounded on the interval $[-1,1]$.

6.1 Q15

Denote the function f and g repectively by $f=\cos :[0, \pi] \rightarrow[-1,1]$ and $g=\arccos :[-1,1] \rightarrow[0, \pi]$. For $x \in(0, \pi)$, let $y=\cos x$, since $f(x)$ is differentiable at x, and $f^{\prime}(x)=\sin (x) \neq 0$, then by Theorem 6.1.8 in the textbook, we have

$$
\arccos y=\frac{1}{(\cos x)^{\prime}}=-\frac{1}{\sin x}=-\frac{1}{\sqrt{1-\cos ^{2} x}}=-\frac{1}{\sqrt{1-y^{2}}}
$$

where $y \in(-1,1)$. For $y=1$, then $g(1)=\arccos 1=0$, and $f^{\prime}(0)=\cos ^{\prime}(0)=0$. Suppose $g=\arccos$ is differentiable at $y=1$. Since $g \circ f(x)=x, x \in[0, \pi)$, then by the chain rule, we get $g^{\prime}(f(0)) f^{\prime}(0)=1$. However, $f^{\prime}(0)=0$, which leads to a contradiction.

Therefore, $g=\arccos$ is not differentiable at $y=1$. For the case $y=-1$, we apply the similar argument.

6.2 Q9

For $x \neq 0$, note that $\sin \frac{1}{x} \geq-1$, then

$$
f(x)=2 x^{4}+x^{4} \sin \frac{1}{x} \geq 2 x^{4}-x^{4}=x^{4} \geq 0
$$

Since $f(0)=0$, then f has an absolutely minimum at $x=0$. For $x \neq 0$, we can get

$$
\begin{aligned}
f^{\prime}(x) & =8 x^{3}+4 x^{3} \sin \frac{1}{x}-x^{2} \cos \frac{1}{x} \\
& =x^{2}\left(8 x+4 x \sin \frac{1}{x}-\cos \frac{1}{x}\right)
\end{aligned}
$$

Take a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $x_{n}=\frac{1}{\pi n}, n \in \mathbb{N}$. Then

$$
\begin{aligned}
f^{\prime}\left(x_{n}\right) & =\left(\frac{1}{\pi n}\right)^{2}\left(\frac{8}{\pi n}+\frac{4}{\pi n} \sin \pi n-\cos \pi n\right) \\
& =\left(\frac{1}{\pi n}\right)^{2}\left(\frac{8}{\pi n}-(-1)^{n}\right)
\end{aligned}
$$

For any neighbourhood V of 0 , without loss of generality, we consider the case $V=(-\delta, \delta)$, for some $\delta>0$. We set $N=\max \left\{\left[\frac{1}{\pi \delta}\right]+1,\left[\frac{8}{\pi}\right]+1\right\}$, then $\forall n \geq N$,
$x_{n}=\frac{1}{\pi n} \in V=(-\delta, \delta)$. And if we take some n_{1}, such that $n_{1} \geq N$ and let n_{1} be even, then

$$
f^{\prime}\left(x_{n_{1}}\right)=\left(\frac{1}{\pi n_{1}}\right)^{2}\left(\frac{8}{\pi n_{1}}-(-1)^{n_{1}}\right)=\left(\frac{1}{\pi n_{1}}\right)^{2}\left(\frac{8}{\pi n_{1}}-1\right)<0
$$

On the other hand, if we take some n_{2}, such that $n_{2} \geq N$ and let n_{2} be odd, then

$$
f^{\prime}\left(x_{n_{2}}\right)=\left(\frac{1}{\pi n_{2}}\right)^{2}\left(\frac{8}{\pi n_{2}}-(-1)^{n_{2}}\right)=\left(\frac{1}{\pi n_{2}}\right)^{2}\left(\frac{8}{\pi n_{2}}+1\right)>0
$$

Therefore, f^{\prime} has both positive and negative values in V.

6.2 Q10

$\forall \varepsilon>0$, take $\delta=\frac{\varepsilon}{2}$, then for $0<|x|<\delta$,

$$
\left|\frac{g(x)-g(0)}{x-0}-1\right|=\left|\frac{x+2 x^{2} \sin \frac{1}{x}-0}{x-0}-1\right|=\left|2 x \sin \frac{1}{x}\right| \leq|2 x|<\varepsilon
$$

It shows $g^{\prime}(0)=1$. For $x \neq 0$, we have

$$
\begin{aligned}
g^{\prime}(x) & =1+4 x \sin \frac{1}{x}+2 x^{2} \cos \frac{1}{x}\left(-\frac{1}{x^{2}}\right) \\
& =1+4 x \sin \frac{1}{x}-2 \cos \frac{1}{x}
\end{aligned}
$$

Take a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $x_{n}=\frac{1}{\pi n}, n \in \mathbb{N}$. Then

$$
g^{\prime}\left(x_{n}\right)=1+\frac{4}{\pi n} \sin \pi n-2 \cos \pi n=1-2 \cdot(-1)^{n}
$$

For any neighbourhood V of the point 0 , without loss of generality, we consider the case $V=(-\delta, \delta)$, for some $\delta>0$. Set $N=\left[\frac{1}{\pi \delta}\right]+1$, then $\forall n \geq N$, $x_{n} \in V=(-\delta, \delta)$. If $n \geq N$, and n is even, then $g^{\prime}\left(x_{n}\right)=1-2=-1<0$; if $n \geq N$, and n is odd, then $g^{\prime}\left(x_{n}\right)=1-2 \cdot(-1)=3>0$. Therefore, g^{\prime} takes on both positive and negative values in V.

6.2 Q13

Take $a, b \in I$, and $a<b$. Since I is an interval, then $[a, b] \subset I$. Clearly, f is differentiable on (a, b) and f is continuous on $[a, b]$. By Mean Value Theorem, there exists $c \in(a, b)$, such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Since $c \in I$, then $f^{\prime}(c)>0$, implying that $f(b)-f(a)>0$. Then f is strictly increasing on I.

