## 1 More Topological Notions on $\mathbb{R}$

### 1.1 Compactness

Definition 1.1. Let $A \subset \mathbb{R}$ be a subset. The the following are equivalent
i. $A$ is compact
ii. Every sequence in $A$ has a convergent subsequence converging in $A$.
(sequential compactness)
(Heine Borel Characterization)
iii. $A$ is closed and bounded.
iv. If $\left\{I_{i}\right\}_{i \in I}$ is an open (interval) cover of $A$, that is, $A \subset \bigcup_{i \in I} I_{i}$ where $I$ is some index set, then there exists
a finite subset $F \subset I$ such that $A \subset \bigcup_{i \in F} I_{i}$.
(Open Cover Characterization)

Theorem 1.2 (Continuity Preserves Compactness). Let $f: A \rightarrow \mathbb{R}$ be a continuous function where $A$ is compact. Then $f(A)$ is a compact subset.
Corollary 1.3 (Extreme Value Theorem). Let $f: A \rightarrow \mathbb{R}$ be a continuous function from some compact set A. Then $f(A)$ is bounded and we have

$$
\sup _{x \in A} f(A)=\max _{x \in A} f(A) \quad \inf _{x \in A} f(A)=\min _{x \in A} f(A)
$$

Example 1.4. Show that there is no continuous map from $[0,1]$ onto $(0,1)$.
Solution. Suppose not. Let $f:[0,1] \rightarrow(0,1)$ be such continuous function. Then $f([0,1])=(0,1)$ is a compact set. However $(0,1)$ is not compact as it is not closed.
Example 1.5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that $\lim _{x \rightarrow \infty} f(x), \lim _{x \rightarrow-\infty} f(x)<\infty$. Show that $f$ is bounded.

Solution. Write $L:=\lim _{x \rightarrow-\infty} f(x)$ and $R:=\lim _{x \rightarrow \infty} f(x)$. Then by definition, there exists $A, B>0$ such that $|f(x)| \leq \max \{1+|L|, 1+|R|\}$ on $(-\infty,-A)$ and $(B, \infty)$. It remains to show that $f$ is bounded on $[A, B]$. This follows from the extreme value theorem immediately.

### 1.2 Connectedness

Definition 1.6. Let $A \subset \mathbb{R}$. Then the following are equivalent
i. $A$ is an interval, that is, in the form of $[a, b],(a, b],[a, b),(a, b)$ where $a, b \in \mathbb{R}$ and $a, b \in\{ \pm \infty\}$ for the open case.
ii. For all $x, y \in A$, we have $[x, y] \subset A$.

Remark. Singletons are intervals in the form $[x, x]$ from this definition. We call them non-empty degenerate intervals.

Theorem 1.7 (Intermediate Value Theorem). Let $I$ be an interval and $f: I \rightarrow \mathbb{R}$. Let $x, y \in I$ and $c \in \mathbb{R}$ such that $f(x)<c<f(y)$. Then there exists $z \in(x, y)$ or $(y, x)$ such that $f(z)=c$. Equivalently, Let $I$ be an interval and $f: I \rightarrow \mathbb{R}$ be continuous. Then $f(I)$ is an interval.
Example 1.8. Let $f: I \rightarrow \mathbb{R}$ be a continuous function from some interval. Suppose $f(I) \subset \mathbb{Q}$. Is it a must that $f$ is a constant?

Solution. Yes, it is. Note that $f(I)$ is an interval. Suppose $f(I)$ is non-degenerate. Then $I$ contains some non-empty open interval (why?). It follows that $f(I) \cap \mathbb{R} \backslash \mathbb{Q} \neq \phi$ by denseness of irrational numbers. Hence $f(I) \mathbb{Q}$. It must be the case that $f(I)$ is degenerate, that is, a singleton.

## Quick Practice.

1. Let $A \subset \mathbb{R}$ be a compact set.
(a) Let $\left(x_{n}\right)$ be a sequence in $A$. Show that $\left(x_{n}\right)$ converges if each of its convergent subsequence converges to the same limit.
(b) Let $f: A \rightarrow f(A)$ be a continuous bijection. Show that the inverse $f^{-1}$ is continuous.
2. Prove or disprove the following:
(a) There exists a continuous function from $[0,1]$ onto $(0,1)$
(b) There exists a continuous function from $(0,1)$ onto $[0,1]$
(c) There exists a continuous bijection from $(0,1)$ onto $[0,1]$.
(Hint: Only 1 of them is correct)

## 2 Monotone Functions and Homeomorphisms of Intervals

Definition 2.1. Let $f: A \rightarrow \mathbb{R}$ be a function. Then

- $f$ is increasing if $f(x) \leq f(y)$ for all $x, y \in A$ with $x \leq y$.
- $f$ is strictly increasing if $f(x)<f(y)$ for all $x, y \in A$ with $x<y$
- Similarly one can define (strictly) decreasing functions and functions are called (strictly) monotone if it is either (strictly) increasing or (strictly) decreasing
Theorem 2.2. Let $I=[a, b]$ and $f: I \rightarrow \mathbb{R}$ be an increasing function. Then for all $x \in(a, b) f\left(x^{+}\right):=$ $\lim _{t \rightarrow x^{+}} f(t)$ and $f\left(x^{-}\right):=\lim _{t \rightarrow x^{-}} f(t)$ exist. Using similar notations, we also have $f\left(a^{+}\right), f\left(b^{-}\right)<\infty$
Proof. Note that $f$ is bounded. Then we leave it as an exercise for readers to show that for all $x \in(a, b)$, we have $f\left(x^{+}\right)=\inf \{f(t): t>x\}$ and $f\left(x^{-}\right)=\sup \{f(t): t<x\}$. The case for endpoints is similar.

Definition 2.3. Let $f: A \rightarrow f(A) \subset \mathbb{R}$ be a function and $A$ a subset of $\mathbb{R}$. Then we call $f$ to be a homeomorphism if $f$ is a continuous bijection onto its image such that $f^{-1}$ is continuous.

The proof of the following is left as an exercise.
Theorem 2.4. Let $f:[0,1] \rightarrow \mathbb{R}$ be a homeomorphism onto its image such that $f(0)<f(1)$. Then $f$ is strictly increasing.

## 3 Exercise

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a homeomorphism onto its image.
(a) Show that $f([0,1]) \subset[f(0), f(1)]$ or $f([0,1]) \subset[f(1), f(0)]$.
(b) Show that $f$ is strictly monotone.
(c) Show that $f$ is strictly monotone if the domain is replaced by any interval.
2. Let $K \subset \mathbb{R}$ be a subset. Show that $K$ is a compact set if and only if every continuous function $f: K \rightarrow \mathbb{R}$ defined on $K$ is bounded. (Hint: Find examples of continuous unbounded functions if $K$ is not compact)
3. Let $A \subset \mathbb{R}$. Let $U \subset A$. We say that $U$ is an open set with respect to $A$ if $U=\mathcal{O} \cap A$ where $\mathcal{O}$ is an open set of $\mathbb{R}$. A subset $A \subset \mathbb{R}$ is said to be connected if $A$ cannot be written as disjoint union of two proper subsets that are open with respect to $A$.
(a) Show that $\mathbb{R}$ is connected. In other words, if $\mathbb{R}=U_{1} \sqcup U_{2}$ where $U_{1}, U_{2}$ are open sets. Then $U_{i}=\mathbb{R}$ for some $i$.
(b) Show that if $A \subset \mathbb{R}$ is connected, then it is an interval. (Hint: Consider the contrapositive.)
(c) Show that every interval is connected. Therefore, connected subsets of $\mathbb{R}$ are precisely intervals.
4. Let $f:[0,1] \rightarrow \mathbb{R}$ be an increasing function.
(a) Show that $f$ is discontinuous at $c \in(0,1)$ if and only if $f\left(c^{+}\right) \neq f\left(c^{-}\right)$where $f\left(c^{+}\right):=\lim _{x \rightarrow c^{+}} f(x)$ and $f\left(c^{-}\right):=\lim _{x \rightarrow c^{-}} f(x)$
(b) Show that $f$ has at most countably many point of discontinuity.
(Hint: Consider the sets $F_{\epsilon}:=\left\{c \in(0,1): f\left(c^{+}\right)-f\left(c^{-}\right)>\epsilon\right\}$ where $\epsilon>0$ )
5. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $[a, b] \subset \mathbb{R}$ be an interval. A partition of $[a, b]$ is a finite sequence $\left(t_{0}, \cdots, t_{n}\right) \subset[a, b]$ where $t_{0}:=a$ and $t_{n}:=b$. We define the variation of $f$ over $[a, b]$ to be

$$
V_{f}([a, b]):=\sup \left\{\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|:\left\{t_{i}\right\} \subset[a, b] \text { a partition }\right\}
$$

We say that $f$ has finite variation over $[a, b]$ if $V_{f}([a, b])<\infty$
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone function. Show that $f$ has finite variation over $[0, t]$ for all $t>0$.
(b) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $V_{f}(t):=V([0, t])$ is finite for all $t \geq 0$ (which is also called a function of finite variation). Show that $V_{f}(t):[0, \infty) \rightarrow \mathbb{R}$ is an increasing function.
(c) Show that if $f$ is of finite variation (which satisfies the conditions in (b)). Then for all $x \in$ $(0, \infty), f\left(x^{+}\right):=\lim _{t \rightarrow x} f(t)$ and $f\left(x^{-}\right):=\lim _{t \rightarrow x} f(t)$ exist and $f$ has at most countably many discountinuity.

