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1 More Topological Notions on R
1.1 Compactness

Definition 1.1. Let A ⊂ R be a subset. The the following are equivalent

i. A is compact

ii. Every sequence in A has a convergent subsequence converging in A. (sequential compactness)

iii. A is closed and bounded. (Heine Borel Characterization)

iv. If {Ii}i∈I is an open (interval) cover of A, that is, A ⊂
⋃

i∈I Ii where I is some index set, then there exists
a finite subset F ⊂ I such that A ⊂

⋃
i∈F Ii. (Open Cover Characterization)

Theorem 1.2 (Continuity Preserves Compactness). Let f : A → R be a continuous function where A is
compact. Then f(A) is a compact subset.

Corollary 1.3 (Extreme Value Theorem). Let f : A → R be a continuous function from some compact set
A. Then f(A) is bounded and we have

sup
x∈A

f(A) = max
x∈A

f(A) inf
x∈A

f(A) = min
x∈A

f(A)

Example 1.4. Show that there is no continuous map from [0, 1] onto (0, 1).

Solution. Suppose not. Let f : [0, 1] → (0, 1) be such continuous function. Then f([0, 1]) = (0, 1) is a compact
set. However (0, 1) is not compact as it is not closed.

Example 1.5. Let f : R → R be continuous such that limx→∞ f(x), limx→−∞ f(x) < ∞. Show that f is
bounded.

Solution. Write L := limx→−∞ f(x) and R := limx→∞ f(x). Then by definition, there exists A,B > 0 such
that |f(x)| ≤ max{1+ |L|, 1+ |R|} on (−∞,−A) and (B,∞). It remains to show that f is bounded on [A,B].
This follows from the extreme value theorem immediately.

1.2 Connectedness

Definition 1.6. Let A ⊂ R. Then the following are equivalent

i. A is an interval, that is, in the form of [a, b], (a, b], [a, b), (a, b) where a, b ∈ R and a, b ∈ {±∞} for the
open case.

ii. For all x, y ∈ A, we have [x, y] ⊂ A.

Remark. Singletons are intervals in the form [x, x] from this definition. We call them non-empty degenerate
intervals.

Theorem 1.7 (Intermediate Value Theorem). Let I be an interval and f : I → R. Let x, y ∈ I and c ∈ R
such that f(x) < c < f(y). Then there exists z ∈ (x, y) or (y, x) such that f(z) = c. Equivalently, Let I be an
interval and f : I → R be continuous. Then f(I) is an interval.

Example 1.8. Let f : I → R be a continuous function from some interval. Suppose f(I) ⊂ Q. Is it a must
that f is a constant?

Solution. Yes, it is. Note that f(I) is an interval. Suppose f(I) is non-degenerate. Then I contains some
non-empty open interval (why?). It follows that f(I) ∩ R\Q ̸= ϕ by denseness of irrational numbers. Hence
f(I)Q. It must be the case that f(I) is degenerate, that is, a singleton.

Quick Practice.

1. Let A ⊂ R be a compact set.

(a) Let (xn) be a sequence in A. Show that (xn) converges if each of its convergent subsequence converges
to the same limit.

(b) Let f : A → f(A) be a continuous bijection. Show that the inverse f−1 is continuous.

2. Prove or disprove the following:

(a) There exists a continuous function from [0, 1] onto (0, 1)

(b) There exists a continuous function from (0, 1) onto [0, 1]

(c) There exists a continuous bijection from (0, 1) onto [0, 1]. (Hint: Only 1 of them is correct)
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2 Monotone Functions and Homeomorphisms of Intervals

Definition 2.1. Let f : A → R be a function. Then

• f is increasing if f(x) ≤ f(y) for all x, y ∈ A with x ≤ y.

• f is strictly increasing if f(x) < f(y) for all x, y ∈ A with x < y

• Similarly one can define (strictly) decreasing functions and functions are called (strictly) monotone if it
is either (strictly) increasing or (strictly) decreasing

Theorem 2.2. Let I = [a, b] and f : I → R be an increasing function. Then for all x ∈ (a, b) f(x+) :=
limt→x+ f(t) and f(x−) := limt→x− f(t) exist. Using similar notations, we also have f(a+), f(b−) < ∞

Proof. Note that f is bounded. Then we leave it as an exercise for readers to show that for all x ∈ (a, b), we
have f(x+) = inf{f(t) : t > x} and f(x−) = sup{f(t) : t < x}. The case for endpoints is similar.

Definition 2.3. Let f : A → f(A) ⊂ R be a function and A a subset of R. Then we call f to be a
homeomorphism if f is a continuous bijection onto its image such that f−1 is continuous.

The proof of the following is left as an exercise.

Theorem 2.4. Let f : [0, 1] → R be a homeomorphism onto its image such that f(0) < f(1). Then f is
strictly increasing.

3 Exercise

1. Let f : [0, 1] → R be a homeomorphism onto its image.

(a) Show that f([0, 1]) ⊂ [f(0), f(1)] or f([0, 1]) ⊂ [f(1), f(0)].

(b) Show that f is strictly monotone.

(c) Show that f is strictly monotone if the domain is replaced by any interval.

2. Let K ⊂ R be a subset. Show that K is a compact set if and only if every continuous function f : K → R
defined on K is bounded. (Hint: Find examples of continuous unbounded functions if K is not compact)

3. Let A ⊂ R. Let U ⊂ A. We say that U is an open set with respect to A if U = O ∩ A where O is an
open set of R. A subset A ⊂ R is said to be connected if A cannot be written as disjoint union of two
proper subsets that are open with respect to A.

(a) Show that R is connected. In other words, if R = U1 ⊔U2 where U1, U2 are open sets. Then Ui = R
for some i.

(b) Show that if A ⊂ R is connected, then it is an interval. (Hint: Consider the contrapositive.)

(c) Show that every interval is connected. Therefore, connected subsets of R are precisely intervals.

4. Let f : [0, 1] → R be an increasing function.

(a) Show that f is discontinuous at c ∈ (0, 1) if and only if f(c+) ̸= f(c−) where f(c+) := limx→c+ f(x)
and f(c−) := limx→c− f(x)

(b) Show that f has at most countably many point of discontinuity.
(Hint: Consider the sets Fϵ := {c ∈ (0, 1) : f(c+)− f(c−) > ϵ} where ϵ > 0)

5. Consider a function f : R → R. Let [a, b] ⊂ R be an interval. A partition of [a, b] is a finite sequence
(t0, · · · , tn) ⊂ [a, b] where t0 := a and tn := b. We define the variation of f over [a, b] to be

Vf ([a, b]) := sup{
n∑

i=1

|f(ti)− f(ti−1)| : {ti} ⊂ [a, b] a partition}

We say that f has finite variation over [a, b] if Vf ([a, b]) < ∞

(a) Let f : R → R be a monotone function. Show that f has finite variation over [0, t] for all t > 0.

(b) Let f : [0,∞) → R be a function such that Vf (t) := V ([0, t]) is finite for all t ≥ 0 (which is also
called a function of finite variation). Show that Vf (t) : [0,∞) → R is an increasing function.

(c) Show that if f is of finite variation (which satisfies the conditions in (b)). Then for all x ∈
(0,∞), f(x+) := limt→x f(t) and f(x−) := limt→x f(t) exist and f has at most countably many
discountinuity.
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