1 Limit of Functions

Definition 1.1 (Cluster Point). Let $A \subset \mathbb{R}$ be a subset. Then $a \in \mathbb{R}$ is a cluster point (limit point) of A if and only if for all open interval I, we have $A \cap I \backslash\{a\} \neq \phi$. Equivalently, a is a sequential limit of some sequence $\left(x_{n}\right)$ in A where $x_{n} \neq a$ for all $n \in \mathbb{N}$
Remark. It is not necessary for a cluster point to lie in the set. Consider $A:=\{1 / n: n \in \mathbb{N}\}$. Then 0 is a cluster point of A but $0 \notin A$.

Definition 1.2 (Functional Limits). Let $A \subset \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ be a function. Let $a \in \mathbb{R}$ be a cluster point of A. Then f has a limit at a if there exists $L \in \mathbb{R}$ such that for all $\epsilon>0$, there exists $\delta>0$ such that for all $x \in B(a, \delta) \backslash\{a\}$ (where $B(a, \delta):=(-\delta+a, a+\delta)$), we have $|f(x)-L|<\epsilon$. In fact it is easy to show that such L is unique and we write $\lim _{x \rightarrow a} f(x):=L$.

Example 1.3. Show by using only the definition that
i. The limit $\lim _{x \rightarrow 4} \frac{x^{2}-4}{x-3}=12$
ii. The limit $\lim _{x \rightarrow 1} \frac{x+3}{x-5} \neq 1$
iii. The limit $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.

Solution.

i. Let $\epsilon>0$. Take $\delta>0$ such that $\delta<\min \{\epsilon / 10,1 / 2\}$. Now suppose $x \in B(4, \delta)$. Then we have $|x-8| \leq|x-4|+|4-8| \leq 4+\delta \leq 5$ and $|x-3| \geq|4-3|-|x-4| \geq 1-\delta \geq 1 / 2$. Hence,

$$
\left|\frac{x^{2}-4}{x-3}-12\right|=\left|\frac{x^{2}-12 x+32}{x-3}\right|=|x-4|\left|\frac{x-8}{x-3}\right| \leq|x-4| \frac{5}{1 / 2} \leq 10|x-4| \leq 10 \cdot \epsilon / 10=\epsilon
$$

ii. Let $\delta>0$. Then take $x \neq 1$ such that $|x-1|<\min \{\delta, 1\}$ Then we have $|x-5| \leq|x-1|+|1-5|=$ $1+4=5$

$$
\left|\frac{x+3}{x-5}-1\right|=\left|\frac{8}{x-5}\right| \geq \frac{8}{|x-5|} \geq \frac{8}{5}
$$

iii. We first show that for all $\delta>0$, there exists $x, y \in B(0, \delta) \backslash\{0\}$ such that $\left|\frac{1}{x}-\frac{1}{y}\right| \geq 1$. Let $\delta>0$. Then take $\delta>x>0$ such that $x<1 / 2$. Take $y:=-x$. Then it follows that we have $x, y \in B(0, \delta) \backslash\{0\}$ and

$$
\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{2}{x}\right|=\frac{2}{x} \geq 2 \cdot 2=4 \geq 1
$$

Now suppose $L:=\lim _{x \rightarrow 0} 1 / x$ existed. Then there exists $\delta>0$ such that $|1 / x-L|<1 / 2$ for all $x \in B(0, \delta) \backslash\{0\}$. It follows that for all $x, y \in B(0, \delta) \backslash\{0\}$, we have $|1 / x-1 / y| \leq|1 / x-L|+|1 / y-L|<1$. This contradicts the previous claim (why?). It must be the case that $\lim _{x \rightarrow 0} 1 / x$ does not exist.

Quick Practice.

i. Prove the following limits using only the definition.
a) $\lim _{x \rightarrow-1} \frac{x+5}{2 x+3}=4$
b) $\lim _{x \rightarrow 3} \frac{x^{2}}{x-2} \neq 1$
c) $\lim _{x \rightarrow 0} \frac{x}{|x|}$ does not exist.
d) $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}=0$
e) $\lim _{x \rightarrow 4} \sqrt{x} \neq 1$
f) $\lim _{x \rightarrow 0} \frac{1}{x}(x>0)$ does not exist
ii. Let $f: A \rightarrow \mathbb{R}$ be a function and $a \in \mathbb{R}$ a cluster point of A. Suppose $\lim _{x \rightarrow a} f(x) \neq L \in \mathbb{R}$. Show that there exists $\epsilon_{0}>0$ and a sequence $\left(x_{n}\right)$ in A such that $\lim x_{n}=a$ but $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$ for all $n \in \mathbb{N}$.
iii. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $a \in \mathbb{R}$.
(a) Suppose $\lim _{x \rightarrow a} f(x)$ exists. Show that for all $\epsilon>0$, there exists $\delta>0$ such that for all $x, y \in$ $B(\delta, a) \backslash\{a\}$, we have $|f(x)-f(y)|<\epsilon$.
(b) Prove that the converse is true. This is the Cauchy Criteria for functional limits.
(Hint: You may use the sequential criteria for limits, which state that $\lim _{x \rightarrow a} f(x)=L$ if and only if every sequence $\left(x_{n}\right)$ with $x_{n} \rightarrow a$ has the property that $f\left(x_{n}\right) \rightarrow L$, provided that a is a cluster point of the domain.)

2 Other Notions of Functional Limits

Definition 2.1 (One-sided Limits). Let $f: A \rightarrow \mathbb{R}$ be a function and $a \in \mathbb{R}$ a cluster point of A.

- We say that L is a left limit of f at a if for all $\epsilon>0$ there exists $\delta>0$ such that for all $x \in \mathbb{R}$ with $x \in(a-\delta, a)$ we have $|f(x)-L|<\epsilon$. Left limit is unique if it exists; we write $\lim _{x \rightarrow a^{-}} f(x):=L$
- We say that R is a right limit of f at a if for all $\epsilon>0$ there exists $\delta>0$ such that for all $x \in \mathbb{R}$ with $x \in(a, a+\delta)$ we have $|f(x)-L|<\epsilon$. Right limit is unique if it exists; we write $\lim _{x \rightarrow a^{+}} f(x):=R$.
Example 2.2. Let $f(x):=\frac{|x|}{x}$ be defined on $\mathbb{R} \backslash\{0\}$. Find the left and right limits of $f(x)$ at $x=0$.
Solution. We first claim that $\lim _{x \rightarrow 0^{-}}=-1$. Let $\epsilon>0$. Take $\delta:=\epsilon$. Suppose $x \in(-\delta, 0)$. Then we have $f(x)=|x| / x=-x / x=-1$. Hence, $|f(x)-(-1)|=0<\epsilon$.
Next, we claim that $\lim _{x \rightarrow 0^{+}}$. Let $\epsilon>0$. Take $\delta:=\epsilon$. Suppose $x \in(0, \delta)$. Then we have $f(x)=|x| / x=$ $x / x=1$. Hence, $|f(x)-1|=0<\epsilon$.
Definition 2.3 (Limit to Infinities). Let $f: A \rightarrow \mathbb{R}$ be a function such that A is not bounded above. Then we say $L \in \mathbb{R}$ is a limit to $+\infty$ if for all $\epsilon>0$, there exists $K>0$ such that for all $x>K$, we have $|f(x)-L|<\epsilon$. The limit is in fact unique and we write $\lim _{x \rightarrow \infty} f(x):=L$
Example 2.4. Show that $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{x^{2}-1}=2$.
Solution. Let $\epsilon>0$. Take $K \in \mathbb{R}$ such that $2 / K<\epsilon$ and $K \geq 2$ (why does such K exist?). Suppose $x \geq K$. We have

$$
\left|\frac{2 x^{2}-3}{x^{2}-1}-2\right|=\left|\frac{2 x^{2}-3-2 x^{2}+2}{x^{2}-1}\right|=\left|\frac{-1}{x^{2}-1}\right|=\frac{1}{x^{2}-1} \leq \frac{1}{x^{2}-x^{2} / 2}=\frac{2}{x^{2}}<\epsilon
$$

Quick Practice.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Formulate the definitions of the following.
a) $\lim _{x \rightarrow \infty} f(x)=L$
b) $\lim _{x \rightarrow-\infty} f(x)=L$
c) $\lim _{x \rightarrow \infty} f(x)=\infty$
d) $\lim _{x \rightarrow-\infty} f(x)=-\infty$
e) $\lim _{x \rightarrow c^{-}} f(x)=\infty$
f) $\lim _{x \rightarrow c^{+}} f(x)=-\infty$
2. Verify the following limits using only definitions.
a) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+x+1}{x^{3}+1}=2$
b) $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$
c) $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty$
d) $\lim _{x \rightarrow-\infty} \frac{2 x^{3}+x+1}{x^{3}+1}=2$
e) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
f) $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty$
3. Let $\lfloor x\rfloor$ denotes the greatest integer not exceeding x for all $x \in \mathbb{R}$.

Define $f_{R}: \mathbb{R} \rightarrow \mathbb{R}$ by $f(c):=\lim _{x \rightarrow c^{+}}\lfloor x\rfloor$ and $f_{L}: \mathbb{R} \rightarrow \mathbb{R}$ by $f(c):=\lim _{x \rightarrow c^{-}}\lfloor x\rfloor$ for all $c \in \mathbb{R}$.
Show that f_{R}, f_{L} are well-defined and compute the function defined by $f:=f_{R}-f_{L}$.

3 Exercises

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $a \in \mathbb{R}$ a cluster point. Suppose $\lim _{x \rightarrow a} f(x)>0$. Show that there exists $\delta>0$ such that $f(x)>0$ for all $x \in B(a, \delta) \cap A \backslash\{a\}$
2. Let $f:(a, b) \rightarrow \mathbb{R}$ be an increasing function, that is, $f(x) \leq f(y)$ whenever $x, y \in(a, b)$ and $x \leq y$. Suppose f is bounded above. Show that $\lim _{x \rightarrow b^{-}} f(x)$ exists.
(Hint: You may want to apply the bounded monotone convergence theorem for sequences.)
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, that is, for all $x, y \in \mathbb{R}$ and $t \in[0,1]$, we have

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

(a) Let $x, y, z \in \mathbb{R}$ be such that $x<y<z$. Show that we have

$$
\frac{f(x)-f(y)}{x-y} \leq \frac{f(x)-f(z)}{x-z}
$$

(b) Show that for all $c \in \mathbb{R}$ the right $\operatorname{limit}_{\lim }^{x \rightarrow c^{+}} \boldsymbol{f (x) - f (c)} \underset{x-c}{ }$ exists; in particular it does not diverge to infinities.
(c) Show that $\lim _{x \rightarrow c} f(x)=f(c)$ for all $c \in \mathbb{R}$.
(Hint: It is better for you to first think about the meaning (e.g. graphically) of a convex function.)

