1 Limit of Functions

Definition 1.1 (Cluster Point). Let $A \subset \mathbb{R}$ be a subset. Then $a \in \mathbb{R}$ is a cluster point (limit point) of A if and only if for all open interval I, we have $A \cap I \setminus \{a\} \neq \phi$. Equivalently, a is a sequential limit of some sequence (x_n) in A where $x_n \neq a$ for all $n \in \mathbb{N}$

Remark. It is not necessary for a cluster point to lie in the set. Consider $A := \{1/n : n \in \mathbb{N}\}$. Then 0 is a cluster point of A but $0 \notin A$.

Definition 1.2 (Functional Limits). Let $A \subset \mathbb{R}$ and $f : A \to \mathbb{R}$ be a function. Let $a \in \mathbb{R}$ be a cluster point of A. Then f has a limit at a if there exists $L \in \mathbb{R}$ such that for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in B(a, \delta) \setminus \{a\}$ (where $B(a, \delta) := (-\delta + a, a + \delta)$), we have $|f(x) - L| < \epsilon$. In fact it is easy to show that such L is unique and we write $\lim_{x \to a} f(x) := L$.

Example 1.3. Show by using only the definition that

- *i.* The limit $\lim_{x \to 4} \frac{x^2 4}{x 3} = 12$ *ii.* The limit $\lim_{x \to 1} \frac{x + 3}{x - 5} \neq 1$
- *iii.* The limit $\lim_{x\to 0} \frac{1}{x}$ does not exist.

Solution.

i. Let $\epsilon > 0$. Take $\delta > 0$ such that $\delta < \min\{\epsilon/10, 1/2\}$. Now suppose $x \in B(4, \delta)$. Then we have $|x - 8| \le |x - 4| + |4 - 8| \le 4 + \delta \le 5$ and $|x - 3| \ge |4 - 3| - |x - 4| \ge 1 - \delta \ge 1/2$. Hence,

$$\left|\frac{x^2 - 4}{x - 3} - 12\right| = \left|\frac{x^2 - 12x + 32}{x - 3}\right| = |x - 4| \left|\frac{x - 8}{x - 3}\right| \le |x - 4| \frac{5}{1/2} \le 10|x - 4| \le 10 \cdot \epsilon/10 = \epsilon$$

ii. Let $\delta > 0$. Then take $x \neq 1$ such that $|x - 1| < \min\{\delta, 1\}$ Then we have $|x - 5| \le |x - 1| + |1 - 5| = 1 + 4 = 5$

$$\left|\frac{x+3}{x-5} - 1\right| = \left|\frac{8}{x-5}\right| \ge \frac{8}{|x-5|} \ge \frac{8}{5}$$

iii. We first show that for all $\delta > 0$, there exists $x, y \in B(0, \delta) \setminus \{0\}$ such that $\left|\frac{1}{x} - \frac{1}{y}\right| \ge 1$. Let $\delta > 0$. Then take $\delta > x > 0$ such that x < 1/2. Take y := -x. Then it follows that we have $x, y \in B(0, \delta) \setminus \{0\}$ and

$$\left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{2}{x}\right| = \frac{2}{x} \ge 2 \cdot 2 = 4 \ge 1$$

Now suppose $L := \lim_{x\to 0} 1/x$ existed. Then there exists $\delta > 0$ such that |1/x - L| < 1/2 for all $x \in B(0, \delta) \setminus \{0\}$. It follows that <u>for all</u> $x, y \in B(0, \delta) \setminus \{0\}$, we have $|1/x - 1/y| \le |1/x - L| + |1/y - L| < 1$. This contradicts the previous claim (why?). It must be the case that $\lim_{x\to 0} 1/x$ does not exist.

Quick Practice.

- i. Prove the following limits using only the definition.
 - $\begin{array}{ll} a) & \lim_{x \to -1} \frac{x+5}{2x+3} = 4 \\ d) & \lim_{x \to 0} \frac{x^2}{|x|} = 0 \end{array} \qquad b) & \lim_{x \to 3} \frac{x^2}{x-2} \neq 1 \\ e) & \lim_{x \to 4} \sqrt{x} \neq 1 \end{array} \qquad c) & \lim_{x \to 0} \frac{x}{|x|} \ does \ not \ exist. \\ f) & \lim_{x \to 0} \frac{1}{x} (x > 0) \ does \ not \ exist. \end{array}$
- ii. Let $f : A \to \mathbb{R}$ be a function and $a \in \mathbb{R}$ a cluster point of A. Suppose $\lim_{x\to a} f(x) \neq L \in \mathbb{R}$. Show that there exists $\epsilon_0 > 0$ and a sequence (x_n) in A such that $\lim x_n = a$ but $|f(x_n) L| \ge \epsilon_0$ for all $n \in \mathbb{N}$.
- iii. Let $f:\mathbb{R}\to\mathbb{R}$ be a function and $a\in\mathbb{R}$.
 - (a) Suppose $\lim_{x\to a} f(x)$ exists. Show that for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in B(\delta, a) \setminus \{a\}$, we have $|f(x) f(y)| < \epsilon$.
 - (b) Prove that the converse is true. This is the Cauchy Criteria for functional limits. (Hint: You may use the **sequential criteria for limits**, which state that $\lim_{x\to a} f(x) = L$ if and only if every sequence (x_n) with $x_n \to a$ has the property that $f(x_n) \to L$, provided that a is a cluster point of the domain.)

2 Other Notions of Functional Limits

Definition 2.1 (One-sided Limits). Let $f : A \to \mathbb{R}$ be a function and $a \in \mathbb{R}$ a cluster point of A.

- We say that L is a left limit of f at a if for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$ with $x \in (a \delta, a)$ we have $|f(x) L| < \epsilon$. Left limit is unique if it exists; we write $\lim_{x \to a^-} f(x) := L$
- We say that R is a right limit of f at a if for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$ with $x \in (a, a + \delta)$ we have $|f(x) L| < \epsilon$. Right limit is unique if it exists; we write $\lim_{x \to a^+} f(x) := R$.

Example 2.2. Let $f(x) := \frac{|x|}{x}$ be defined on $\mathbb{R} \setminus \{0\}$. Find the left and right limits of f(x) at x = 0.

Solution. We first claim that $\lim_{x\to 0^-} = -1$. Let $\epsilon > 0$. Take $\delta := \epsilon$. Suppose $x \in (-\delta, 0)$. Then we have f(x) = |x|/x = -x/x = -1. Hence, $|f(x) - (-1)| = 0 < \epsilon$.

Next, we claim that $\lim_{x\to 0^+}$. Let $\epsilon > 0$. Take $\delta := \epsilon$. Suppose $x \in (0, \delta)$. Then we have f(x) = |x|/x = x/x = 1. Hence, $|f(x) - 1| = 0 < \epsilon$.

Definition 2.3 (Limit to Infinities). Let $f : A \to \mathbb{R}$ be a function such that A is not bounded above. Then we say $L \in \mathbb{R}$ is a limit to $+\infty$ if for all $\epsilon > 0$, there exists K > 0 such that for all x > K, we have $|f(x) - L| < \epsilon$. The limit is in fact unique and we write $\lim_{x\to\infty} f(x) := L$

Example 2.4. Show that
$$\lim_{x \to \infty} \frac{2x^2 - 3}{x^2 - 1} = 2$$

Solution. Let $\epsilon > 0$. Take $K \in \mathbb{R}$ such that $2/K < \epsilon$ and $K \ge 2$ (why does such K exist?). Suppose $x \ge K$. We have

$$\left|\frac{2x^2-3}{x^2-1}-2\right| = \left|\frac{2x^2-3-2x^2+2}{x^2-1}\right| = \left|\frac{-1}{x^2-1}\right| = \frac{1}{x^2-1} \le \frac{1}{x^2-x^2/2} = \frac{2}{x^2} < \epsilon$$

Quick Practice.

1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Formulate the definitions of the following.

a)
$$\lim_{x \to \infty} f(x) = L$$

b) $\lim_{x \to -\infty} f(x) = L$
c) $\lim_{x \to \infty} f(x) = \infty$
d) $\lim_{x \to -\infty} f(x) = -\infty$
e) $\lim_{x \to c^{-}} f(x) = \infty$
f) $\lim_{x \to c^{+}} f(x) = -\infty$

2. Verify the following limits using only definitions.

a)
$$\lim_{x \to \infty} \frac{2x^3 + x + 1}{x^3 + 1} = 2$$
b)
$$\lim_{x \to 0^+} \sqrt{x} = 0$$
c)
$$\lim_{x \to 1^+} \frac{1}{x - 1} = \infty$$
d)
$$\lim_{x \to -\infty} \frac{2x^3 + x + 1}{x^3 + 1} = 2$$
e)
$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$
f)
$$\lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

3. Let $\lfloor x \rfloor$ denotes the greatest integer not exceeding x for all $x \in \mathbb{R}$. Define $f_R : \mathbb{R} \to \mathbb{R}$ by $f(c) := \lim_{x \to c^+} \lfloor x \rfloor$ and $f_L : \mathbb{R} \to \mathbb{R}$ by $f(c) := \lim_{x \to c^-} \lfloor x \rfloor$ for all $c \in \mathbb{R}$. Show that f_R, f_L are well-defined and compute the function defined by $f := f_R - f_L$.

3 Exercises

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $a \in \mathbb{R}$ a cluster point. Suppose $\lim_{x\to a} f(x) > 0$. Show that there exists $\delta > 0$ such that f(x) > 0 for all $x \in B(a, \delta) \cap A \setminus \{a\}$
- 2. Let $f : (a, b) \to \mathbb{R}$ be an increasing function, that is, $f(x) \leq f(y)$ whenever $x, y \in (a, b)$ and $x \leq y$. Suppose f is bounded above. Show that $\lim_{x\to b^-} f(x)$ exists. (Hint: You may want to apply the bounded monotone convergence theorem for sequences.)
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function, that is, for all $x, y \in \mathbb{R}$ and $t \in [0, 1]$, we have

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

(a) Let $x, y, z \in \mathbb{R}$ be such that x < y < z. Show that we have

$$\frac{f(x) - f(y)}{x - y} \le \frac{f(x) - f(z)}{x - z}$$

- (b) Show that for all $c \in \mathbb{R}$ the right limit $\lim_{x\to c^+} \frac{f(x)-f(c)}{x-c}$ exists; in particular it does <u>not</u> diverge to infinities.
- (c) Show that $\lim_{x\to c} f(x) = f(c)$ for all $c \in \mathbb{R}$.

(Hint: It is better for you to first think about the meaning (e.g. graphically) of a convex function.)