$1 \pm \infty$ as Limits

We will be mainly investigating sequences that diverge in this note.
Definition 1.1. Let $\left(x_{n}\right)$ be a sequence of real numbers. Then we say that

- $\left(x_{n}\right)$ diverges to $+\infty$, or $\lim x_{n}=+\infty$, if for all $M>0$ there exists $N \in \mathbb{N}$ such that $x_{n} \geq M$ for all $n \geq N$ (that is $x_{n} \geq M$ eventually)
- $\left(x_{n}\right)$ diverges to $-\infty$, or $\lim x_{n}=-\infty$, if for all $M>0$ there exists $N \in \mathbb{N}$ such that $x_{n} \leq-M$ for all $n \geq N$ (that is $x_{n} \leq-M$ eventually)
Example 1.2. Let $x_{n}:=n / \sqrt{1+n}$ for all $n \in \mathbb{N}$. Show that $\lim x_{n}=\infty$.
Solution. Let $M>0$. Let $N \in \mathbb{N}$ such that $N>M$ by Archimedean Property. Suppose $n \geq 4 N^{2}$. We have $x_{n}=\frac{n}{\sqrt{1+n}} \geq \frac{n}{\sqrt{3 n+n}}=\frac{\sqrt{n}}{2} \geq \frac{\sqrt{4 N^{2}}}{2}=N \geq M$. We conclude by definition.
Example 1.3 (Generalized Monotone Convergence). Let $\left(x_{n}\right)$ be an increasing sequence. Show that it either converges or diverges to ∞.
Solution. We split the question to two cases. First, suppose $\left(x_{n}\right)$ is unbounded. Let $M>0$. By unboundedness, there exists $N \in \mathbb{N}$ such that $x_{N} \geq M$. Note that $\left(x_{n}\right)$ is increasing; therefore $x_{n} \geq x_{N} \geq M$ for all $n \geq N$. By definition, $\lim x_{n}=\infty$.
We leave the bounded part to the readers.
Example 1.4 (Generalized Compactness Theorem). Let $\left(x_{n}\right)$ be a sequence. Show that it either has a subsequence that converges, a subsequence that diverges to ∞ or one that diverges to $-\infty$
Solution. We leave it to the readers.
Example 1.5. Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Show that $\lim 1 / x_{n}=0$ if and only if $\lim x_{n}=\infty$.
Solution. (\Rightarrow). Let $M>0$. Then there exists $N \in \mathbb{N}$ such that $1 / x_{n}<1 / M$ for all $n \in \mathbb{N}$. This imples that $x_{n} \geq M$ for all $n \geq N$.
(\Leftarrow). Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $x_{n} \geq 1 / \epsilon$ for all $n \geq N$. This imples that $0 \leq 1 / x_{n} \leq \epsilon$ for all $n \geq N$.
Remark. The requirement of positivity (or negativity) in this example is important. Consider $x_{n}:=$ $(-1)^{n} n$ for all $n \in \mathbb{N}$. Then clearly $\lim 1 / x_{n}=0$, but neither $\lim x_{n}=\infty \operatorname{nor} \lim x_{n}=-\infty$.
Example 1.6. Let $x_{n}:=2^{n}$ for all $n \in \mathbb{N}$. Show that it is unbounded.
Solution. Note that $\lim 1 / x_{n}=(1 / 2)^{n}=0$ by considering subsequences. Therefore $\lim x_{n}=\infty$. Note that $\left(x_{n}\right)$ is increasing. By the generalized monotone convergence, it must be the case that $\left(x_{n}\right)$ is unbounded.

Of course the above argument seems to be too much: the unboundedness of $\left(2^{n}\right)$ can be shown using the binomial theorem. This is because we have for all $n \in \mathbb{N}$.

$$
2^{n}=(1+1)^{n}=\binom{n}{0}+\binom{n}{1}+\cdots\binom{n}{n} \geq 1+n
$$

Quick Practice.

1. Let $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be two sequences of positive numbers. We write $f_{n}=O\left(g_{n}\right)$ if there exists $C>0$ such that $f_{n} \leq C g_{n}$ eventually. (This is the big- O notation.)
a). Show that if $\lim f_{n}=\infty$ then $\lim g_{n}=\infty$.
b). Is the converse of part (a) true?
c). Show that $f_{n}=O\left(g_{n}\right)$ if and only if $\overline{\lim } f_{n} / g_{n}<\infty$
2. Let $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be two sequences of positive numbers. We write $f_{n}=o\left(g_{n}\right)$ if for all $c>0$ we have that $f_{n} \leq c g_{n}$ eventually. (This is the small-o notation.)
a). Show that $f_{n}=o\left(g_{n}\right)$ if and only if $\lim _{n} g_{n} / f_{n}=\infty$
b). Suppose $f_{n}=o\left(g_{n}\right)$ and $g_{n}=o\left(h_{n}\right)$ where f, g,h are sequences of positive numbers. Show that $f_{n}=o\left(h_{n}\right)$.
c). If $f_{n}=o\left(g_{n}\right)$ and $g_{n}=o\left(f_{n}\right)$, what can we say about the sequences?
d). Let $x_{n}:=2^{n}, y_{n}:=n!z_{n}:=n^{n}$ and $w_{n}:=n^{3}$ for all $n \in \mathbb{N}$. Determine all possible asymptotic (big O, small o) among the sequences.

2 Some other Ways of Assigning Limits

Definition 2.1 (Cesáro Summability). Let $\left(x_{n}\right)$ be a sequence of real numbers. Define

$$
c\left(x_{n}\right)=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)
$$

for all $n \in \mathbb{N}$. Then we say that $\left(x_{n}\right)$ is Cesáro summable if $\lim c\left(x_{n}\right)$ exists.
Remark. The terminology here may be a bit different from those in existing literature.
Example 2.2. Consider $x_{n}:=(-1)^{n}$. Then it is a divergent sequence. However $\left(x_{n}\right)$ is Cesáro summable. In fact it is not hard to see that $\lim c\left(x_{n}\right)=0$.

Proposition 2.3. Let $\left(x_{n}\right)$ be a sequence of real numbers. Suppose $\lim x_{n}=x \in \mathbb{N}$. Then $\left(x_{n}\right)$ is Cesáro summable and $\lim c\left(x_{n}\right)=x$

Proof. It suffices to consider the case where $x=0$ (why?). Suppose $\lim x_{n}=0$. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $n \geq N$ would imply $\left|x_{n}\right|<\epsilon$. Furthermore, let $J \in \mathbb{N}$ such that $1 / J<\epsilon / \sum_{i=1}^{N}\left|x_{i}\right|$ (we can safely suppose that $\sum_{i=1}^{N}\left|x_{i}\right| \neq 0$ (why?). Now suppose $n \geq J, N$. Then we have

$$
\begin{aligned}
\left|c\left(x_{n}\right)\right|=\left|\frac{1}{n} \sum_{i=1}^{n} x_{i}\right| & =\left|\frac{1}{n} \sum_{i=1}^{N} x_{i}+\frac{1}{n} \sum_{i=N+1}^{n} x_{i}\right| \\
& \leq \frac{1}{n} \sum_{i=1}^{N}\left|x_{i}\right|+\frac{1}{n} \sum_{i=N+1}^{n}\left|x_{i}\right| \\
& \leq \frac{1}{J} \sum_{i=1}^{N}\left|x_{i}\right|+\frac{n-N}{n} \epsilon \leq \epsilon+\epsilon=2 \epsilon
\end{aligned}
$$

It follows that $\lim c\left(x_{n}\right)=0=\lim x_{n}$.
Quick Practice.

1. Let $\left(x_{n}\right)$ be a sequence. Define $c\left(x_{n}\right):=\left(x_{1}+\cdots+x_{n}\right) / n$.
a). Show that if $\left(c\left(x_{n}\right)\right)$ converge, then $\lim x_{n} / n=0$.
b). Construct a sequence such that $\lim c\left(x_{n}\right)$ does not exist.
2. Let $A \subset \mathbb{N}$ be a subset of natural numbers. Then for all $n \in \mathbb{N}$, we define

$$
d_{n}(A):=\frac{|A \cap[1, n]|}{n}=\frac{\text { number of elements in } A \cap[1, n]}{n}
$$

the probability of occurence of A in first n natural numbers. Clearly $d_{n}(A) \in[0,1]$ for all $n \in \mathbb{N}$. If $\left(d_{n}(A)\right)$ converges, we say that A has natural density $d(A):=\lim d_{n}(A)$.
a). Let $E:=\{2 n: n \in \mathbb{N}\}$ be the set of even numbers. Show that $d(E)=1 / 2$.
b). Let $S:=\left\{n^{2}: n \in \mathbb{N}\right\}$ be the set of square numbers. Show that $d(S)=0$.
c). Let $\left(x_{n}\right)$ be a sequence of real numbers. We say that $\left(x_{n}\right)$ converges statistically to $x \in \mathbb{R}$ if for all $\epsilon>0$ that set

$$
A_{\epsilon}:=\left\{n \in \mathbb{N}:\left|x_{n}-x\right| \geq \epsilon\right\}
$$

has natural density $d\left(A_{\epsilon}\right)=0$.
i. Show that if $\left(x_{n}\right)$ converges in the ordinary sense to $x \in \mathbb{R}$, than $\left(x_{n}\right)$ converges to x statistically.
ii. Find an example of a sequence $\left(x_{n}\right)$ that diverges in the ordinary sense but converges statistically.

