$\pm\infty$ as Limits 1

We will be mainly investigating sequences that **diverge** in this note.

Definition 1.1. Let (x_n) be a sequence of real numbers. Then we say that

- (x_n) diverges to $+\infty$, or $\lim x_n = +\infty$, if for all M > 0 there exists $N \in \mathbb{N}$ such that $x_n \ge M$ for all $n \ge N$ (that is $x_n \ge M$ eventually)
- (x_n) diverges to $-\infty$, or $\lim x_n = -\infty$, if for all M > 0 there exists $N \in \mathbb{N}$ such that $x_n \leq -M$ for all $n \ge N$ (that is $x_n \le -M$ eventually)

Example 1.2. Let $x_n := n/\sqrt{1+n}$ for all $n \in \mathbb{N}$. Show that $\lim x_n = \infty$.

Solution. Let M > 0. Let $N \in \mathbb{N}$ such that $N \ge M$ by Archimedean Property. Suppose $n \ge 4N^2$. We have $x_n = \frac{n}{\sqrt{1+n}} \ge \frac{n}{\sqrt{3n+n}} = \frac{\sqrt{n}}{2} \ge \frac{\sqrt{4N^2}}{2} = N \ge M$. We conclude by definition.

Example 1.3 (Generalized Monotone Convergence). Let (x_n) be an increasing sequence. Show that it either converges or diverges to ∞ .

Solution. We split the question to two cases. First, suppose (x_n) is unbounded. Let M > 0. By unboundedness, there exists $N \in \mathbb{N}$ such that $x_N \geq M$. Note that (x_n) is increasing; therefore $x_n \ge x_N \ge M$ for all $n \ge N$. By definition, $\lim x_n = \infty$.

We leave the bounded part to the readers.

Example 1.4 (Generalized Compactness Theorem). Let (x_n) be a sequence. Show that it either has a subsequence that converges, a subsequence that diverges to ∞ or one that diverges to $-\infty$ Solution. We leave it to the readers.

Example 1.5. Let (x_n) be a sequence of positive real numbers. Show that $\lim 1/x_n = 0$ if and only if $\lim x_n = \infty$.

Solution. (\Rightarrow) . Let M > 0. Then there exists $N \in \mathbb{N}$ such that $1/x_n < 1/M$ for all $n \in \mathbb{N}$. This imples that $x_n \ge M$ for all $n \ge N$.

(\Leftarrow). Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $x_n \geq 1/\epsilon$ for all $n \geq N$. This imples that $0 \leq 1/x_n \leq \epsilon$ for all $n \geq N$.

Remark. The requirement of positivity (or negativity) in this example is important. Consider $x_n :=$ $(-1)^n n$ for all $n \in \mathbb{N}$. Then clearly $\lim 1/x_n = 0$, but neither $\lim x_n = \infty$ nor $\lim x_n = -\infty$.

Example 1.6. Let $x_n := 2^n$ for all $n \in \mathbb{N}$. Show that it is unbounded.

Solution. Note that $\lim 1/x_n = (1/2)^n = 0$ by considering subsequences. Therefore $\lim x_n = \infty$. Note that (x_n) is increasing. By the generalized monotone convergence, it must be the case that (x_n) is unbounded.

Of course the above argument seems to be too much: the unboundedness of (2^n) can be shown using the binomial theorem. This is because we have for all $n \in \mathbb{N}$.

$$2^{n} = (1+1)^{n} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} \ge 1+n$$

Quick Practice.

- 1. Let (f_n) and (g_n) be two sequences of positive numbers. We write $f_n = O(g_n)$ if there exists C > 0 such that $f_n \leq Cg_n$ eventually. (This is the big-O notation.)
 - a). Show that if $\lim f_n = \infty$ then $\lim g_n = \infty$.
 - b). Is the converse of part (a) true?
 - c). Show that $f_n = O(g_n)$ if and only if $\overline{\lim} f_n/g_n < \infty$
- 2. Let (f_n) and (g_n) be two sequences of positive numbers. We write $f_n = o(g_n)$ if for all c > 0we have that $f_n \leq cg_n$ eventually. (This is the small-o notation.)
 - a). Show that $f_n = o(g_n)$ if and only if $\lim_n g_n / f_n = \infty$
 - b). Suppose $f_n = o(g_n)$ and $g_n = o(h_n)$ where f, g, h are sequences of positive numbers. Show that $f_n = o(h_n)$.
 - c). If $f_n = o(g_n)$ and $g_n = o(f_n)$, what can we say about the sequences?
 - d). Let $x_n := 2^n$, $y_n := n! \ z_n := n^n$ and $w_n := n^3$ for all $n \in \mathbb{N}$. Determine all possible asymptotic (big O, small o) among the sequences.

2 Some other Ways of Assigning Limits

Definition 2.1 (Cesáro Summability). Let (x_n) be a sequence of real numbers. Define

$$c(x_n) = \frac{1}{n}(x_1 + \dots + x_n)$$

for all $n \in \mathbb{N}$. Then we say that (x_n) is *Cesáro summable* if $\lim c(x_n)$ exists.

Remark. The terminology here may be a bit different from those in existing literature.

Example 2.2. Consider $x_n := (-1)^n$. Then it is a divergent sequence. However (x_n) is Cesáro summable. In fact it is not hard to see that $\lim c(x_n) = 0$.

Proposition 2.3. Let (x_n) be a sequence of real numbers. Suppose $\lim x_n = x \in \mathbb{N}$. Then (x_n) is Cesáro summable and $\lim c(x_n) = x$

Proof. It suffices to consider the case where x = 0 (why?). Suppose $\lim x_n = 0$. Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $n \ge N$ would imply $|x_n| < \epsilon$. Furthermore, let $J \in \mathbb{N}$ such that $1/J < \epsilon / \sum_{i=1}^{N} |x_i|$ (we can safely suppose that $\sum_{i=1}^{N} |x_i| \ne 0$ (why?)). Now suppose $n \ge J, N$. Then we have

$$|c(x_n)| = \left|\frac{1}{n}\sum_{i=1}^n x_i\right| = \left|\frac{1}{n}\sum_{i=1}^N x_i + \frac{1}{n}\sum_{i=N+1}^n x_i\right|$$
$$\leq \frac{1}{n}\sum_{i=1}^N |x_i| + \frac{1}{n}\sum_{i=N+1}^n |x_i|$$
$$\leq \frac{1}{J}\sum_{i=1}^N |x_i| + \frac{n-N}{n}\epsilon \leq \epsilon + \epsilon = 2\epsilon$$

It follows that $\lim c(x_n) = 0 = \lim x_n$.

Quick Practice.

1. Let (x_n) be a sequence. Define $c(x_n) := (x_1 + \cdots + x_n)/n$.

- a). Show that if $(c(x_n))$ converge, then $\lim x_n/n = 0$.
- b). Construct a sequence such that $\lim c(x_n)$ does not exist.
- 2. Let $A \subset \mathbb{N}$ be a subset of natural numbers. Then for all $n \in \mathbb{N}$, we define

$$d_n(A) := \frac{|A \cap [1,n]|}{n} = \frac{number \ of \ elements \ in \ A \cap [1,n]}{n}$$

the probability of occurence of A in first n natural numbers. Clearly $d_n(A) \in [0,1]$ for all $n \in \mathbb{N}$. If $(d_n(A))$ converges, we say that A has natural density $d(A) := \lim d_n(A)$.

- a). Let $E := \{2n : n \in \mathbb{N}\}$ be the set of even numbers. Show that d(E) = 1/2.
- b). Let $S := \{n^2 : n \in \mathbb{N}\}$ be the set of square numbers. Show that d(S) = 0.
- c). Let (x_n) be a sequence of real numbers. We say that (x_n) <u>converges statistically</u> to $x \in \mathbb{R}$ if for all $\epsilon > 0$ that set

$$A_{\epsilon} := \{ n \in \mathbb{N} : |x_n - x| \ge \epsilon \}$$

has natural density $d(A_{\epsilon}) = 0$.

- *i.* Show that if (x_n) converges in the ordinary sense to $x \in \mathbb{R}$, than (x_n) converges to x statistically.
- ii. Find an example of a sequence (x_n) that diverges in the ordinary sense but converges statistically.