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1 Cauchy Sequences

Definition 1.1. Let (xn) be a sequence. Then we call (xn) a Cauchy sequence if for all ε > 0, there
exists N ∈ N such that for all n,m ≥ N , we have

|xn − xm| < ε

Remark.

• A Cauchy sequence can be thought of as a sequence whose terms are getting close to each
other eventually.

• In some literature, the notion limn,m→∞ |xn − xm| = 0 is used to describe the definition of
Cauchy sequence. We do not use this notation as it may cause confusion with the notion of
iterated limits limn→∞ limm→∞ xm,n and limm→∞ limn→∞ xm,n for sequences (xmn) with two
indices.

Theorem 1.2 (Completeness of R). Let (xn) be a sequence of real numbers. Then (xn) is a con-
vergent sequence if and only if (xn) is a Cauchy sequence.

Remark. This result allows us to work with limits of sequence whose values are hard to compute!

1.1 Getting Used to the Definition

Example 1.3. Show that (xn := 1/n) is a Cauchy sequence.

Solution. Let ε > 0 and pick N ∈ N such that 2/N < ε by the Archimedean Property. Now suppose
n,m ≥ N with n,m ∈ N, we have

|xn − xm| = |1/n− 1/m| ≤ |1/n|+ |1/m| ≤ 2/N < ε

By definition, (xn) is a Cauchy sequence.

Example 1.4. Let (xn) be a sequence of real numbers. Define yn :=
∑n
k=1 |xn| and zn :=

∑n
k=1 xn.

Show that if (yn) converges, then (zn) converges.

Solution. It suffices to show that (zn) is a Cauchy sequence. First observe that that for all n,m ∈ N
with n > m, we have zn = x1 + · · ·+ xn and zm = x1 + · · ·+ xm. Hence,

|zn − zm| = |xm+1 + · · ·+ xn| ≤ |xm+1|+ · · ·+ |xn| = |yn − ym|

by the triangle inequality.
Now let ε > 0. Since we know that (yn) converges, in particular (yn) is Cauchy, there exists N ∈ N
such that for all n,m ≥ N we have |yn − ym| < ε. Hence by the above observation, when n,m ∈ N
and without loss of generality n > m (why can we do this?) we have

|zn − zm| ≤ |yn − ym| < ε

Therefore (zn) is a Cauchy sequence and so converges.

Example 1.5. Let (xn) be a sequence of real numbers. Suppose for all n ∈ N, we have |xn − xn+1| <
1
2n . Show that (xn) is a Cauchy sequence.

Solution. First notice that for all n,m ∈ N with n > m, we have

|xn − xm| = |xn − xn−1 + xn−1 − · · · − xm+1 + xm+1 − xm| ≤ |xn − xn−1|+ · · ·+ |xm+1 − xm|

≤ 1

2n−1
+ · · ·+ 1

2m

by the triangle inequality. Notice that by the geometric progression identity,

1

2n−1
+ · · ·+ 1

2m
=

1

2m
(

1

2n−m−1
+ · · ·+ 1) =

1

2m
1− (1/2)n−m

1− 1/2
=

(1/2)m − (1/2)n

1− 1/2
=

1

2
(

1

2m
− 1

2n
)

Now let ε > 0. Note that the sequence (1/2n) is convergent and hence cauchy, so there exists
N ∈ N such that |1/2n − 1/2m| < ε. Hence, for all n,m ≥ N with n > m, we have by the above
computation that |xn − xm| ≤ 1/2(1/2m − 1/2n) < ε/2 < ε. By definition (xn) is Cauchy.
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1.2 Cauchy Sequence and Subsequences

Proposition 1.6 (Negation of the definition). Let (xn) be a sequence. Then (xn) is not Cauchy if
and only if there exists ε0 > 0 and two subsequences (yn) and (zn) of (xn) such that |yn − zn| ≥ ε0
Example 1.7. Show that the sequence (xn := cos(nπ/2)) does not converges.

Solution. Consider the subsequences (yn := x4n = cos(2nπ) = 1) and (zn := x4n+1 = cos(π/2) = 0).
Then for all n ∈ N, we have |yn − zn| = |1− 0| = 1 ≥ 1. It follows that (xn) is not a Cauchy
sequence and so does not converge.

Example 1.8. Show that the sequence (xn :=
√
n) does not converge.

Solution. We show that (xn) is not a Cauchy sequence. Consider the subsequences (yn := xn2 = n)
and (zn := x4n2 = 2n). Then for all n ∈ N, we have |yn − zn| = |2n− n| = n ≥ 1. It follows that
(xn) is not a Cauchy sequence and so does not converge.

Example 1.9. Let (xn) be a Cauchy sequence. Show that there exists a subsequence (yn) such that
for all n ∈ N, we have

|yn+1 − yn| ≤
1

2n

Solution. Consider the sequence (εn := 1/2n). Then by definition of Cauchy sequence, there exists
N1 ∈ N such that |xn − xm| < ε1 for all n,m ≥ N1. Take y1 = xk1 where k1 ≥ N1.
Next, there exists N2 ∈ N such that |xn − xm| < ε2 for all n,m ≥ N1. Then take y2 := xk2 where
k2 > N2, k1.
Inductively, for all α ∈ N, there exists Nα ∈ N, such that |xn − xm| < εα. We then take yα := xkα
where kα > Nα and kα > kα−1, · · · k1. Then by the construction it is clear that (yn) is a subsequence
of (xn), furthermore

|yn+1 − yn| =
∣∣xkn+1

− xkn
∣∣ < εn =

1

2n

for all n ∈ N since kn+1 ≥ kn ≥ Nn for all n ∈ N by construction.

2 Exercise

1. For each of the following sequences (xn), determine whether it is a Cauchy sequence
by definition or its negation.

xn := 1/n2a) xn := 1− (−1)nb) xn :=
∑n
k=1

1
k(k+1)c)

xn :=
∑n
k=1

1
k2d) xn :=

√
n−
√
n− 1e) xn :=

∑n
k=1

1
kf)

2. Following the textbook P.88 Definition 3.5.7, we call a sequence (xn) contractive if there exists
C ∈ (0, 1) such that for all n ∈ N, we have |xn+2 − xn+1| ≤ C|xn+1 − xn|.

(a) Show that a contractive sequence must converge

(b) Let f : R→ R be a real-valued function from the real domain. Suppose f is a contraction,
that is, there exists C ∈ (0, 1) such that |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ R. Define
fn := f(f(· · · f︸ ︷︷ ︸

n times

(0))). Show that (fn) converges.

3. Find a Cauchy sequence (xn) such that there exists no constant C > 0 with the property that

|xn − xn+1| ≤
C

2n

4. Let r ∈ (0, 1) and (an) be a bounded sequence of real numbers.

(a) Define yn :=
∑n
k=1 r

k−1. Show that (yn) converges.

(b) Define a := lim sup |an|1/n. Suppose a < 1. Show that there exists 0 ≤ r < 1 and N ∈ N
such that for all n ≥ N , we have

|an| ≤ rn

(c) Define the nth partial sum xn := a1 + · · · + an =
∑n
k=1 ai for (an). Now suppose

a := lim sup |an|1/n < 1. Show that (xn) converges.
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