1 Uniform Continuity

Definition 1.1. Let \(f : A \to \mathbb{R} \) be a function where \(A \subset \mathbb{R} \). Then we call \(f \) to be uniformly continuous if and only if for all \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(|x - y| < \delta \) would imply \(|f(x) - f(y)| < \epsilon \).

Remark. Every uniformly continuous function is continuous on its domain. This can be checked from definition.

Example 1.2. Define \(f(x) := \sqrt{x} \) for all \(x \geq 0 \). Show that

a. \(f \) is uniformly continuous on \([a, 1]\) for all \(a > 0 \).

b. \(f \) is uniformly continuous on \([0, 1]\)

Solution. a. Let \(\epsilon > 0 \). We first observe that for all \(x, y \in [a, 1] \), we have \(|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \leq |x - y|\frac{1}{2\sqrt{a}} \). Hence by taking \(\delta = \frac{\epsilon}{2\sqrt{a}} < \epsilon \), we have \(|f(x) - f(y)| \leq \epsilon \) for all \(x, y \in [a, 1] \).

b. Let \(\epsilon > 0 \). First note that \(\lim_{x \to a^+} f(x) = 0 \). Hence there exists \(t > 0 \) such that \(|f(x)| < \epsilon/2 \). It follows that for all \(x, y \in [0, t] \), we have \(|f(x) - f(y)| < \epsilon \). Next, \(f \) is continuous at \(t \geq 0 \). Hence, there exists \(\delta_1 > 0 \) such that \(|x - t| < \delta_1 \) and \(x, y \geq 0 \), we have \(|f(x) - f(t)| < \epsilon/2 \). Furthermore, \(f \) is uniformly continuous on \([t, 1]\) by the first part. Therefore, there exists \(\delta_2 > 0 \) such that \(|f(x) - f(y)| < \epsilon \) for all \(x, y \in [t, 1] \) with \(|x - y| < \delta_2 \). Now take \(\delta < \delta_1, \delta_2 \). Then for all \(x, y \in [0, 1] \) with \(|x - y| < \delta \), either \(x, y \in [0, t] \), \(x, y \in B(t, \delta_1) \) or \(x, y \in [t, 1] \). In any case, we have \(|f(x) - f(y)| < \epsilon \).

Theorem 1.3 (Uniformly Continuous Theorem). Let \(f : A \to \mathbb{R} \) be a continuous function with \(A \subset \mathbb{R} \). If \(A \) is a compact set, then \(f \) is uniformly continuous.

Example 1.4. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function. Suppose \(\lim_{x \to -\infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \) exist. Show that \(f \) is uniformly continuous.

Solution. Write \(L := \lim_{x \to -\infty} f(x) \) and \(R := \lim_{x \to -\infty} f(x) \). Let \(\epsilon > 0 \). Then there exists \(a, b \in \mathbb{R} \) such that \(|f(x) - L| < \epsilon/2 \) for all \(x \in (-\infty, a) \) and \(|f(x) - R| < \epsilon/2 \) for all \(x \in (b, \infty) \). It follows from the triangle inequality that \(|f(x) - f(y)| < \epsilon \) when either \(x, y \in (-\infty, a) \) or \(x, y \in (b, \infty) \). Now note that \([a, b]\) is a compact interval. Therefore, \(f \) is uniformly continuous of \([a, b]\) by the Uniformly Continuous Theorem. Therefore, there exists \(\delta > 0 \) such that \(|f(x) - f(y)| < \epsilon \) when \(|x - y| < \delta \) with \(x, y \in [a, b] \). Note that \(f \) is continuous at \(a, b \). Hence, there exist \(\delta_a, \delta_b > 0 \) such that \(|f(x) - f(a)| < \epsilon/2 \) for \(x \in B(a, \delta_a) \) and \(|f(x) - f(b)| < \epsilon/2 \) for \(x \in B(b, \delta_b) \). Now take \(\delta < \delta_a, \delta_b \). Let \(x, y \in \mathbb{R} \) with \(|x - y| < \delta \). Then it must be the case that \(x \in (-\infty, a) \), \(x, y \in (b, \infty) \), \(x, y \in [a, b] \) or \(x, y \in \delta_a \) or \(\delta_b \) neighborhood of \(a, b \). It follows that \(|f(x) - f(y)| < \epsilon \).

Proposition 1.5 (Divergence Criteria for Uniform Continuity). Let \(f : A \to \mathbb{R} \) be a function. Then \(f \) is not uniformly continuous if and only if there exist sequences \((x_n) \) and \((y_n) \) in \(A \) with \(\lim |x_n - y_n| = 0 \), and \(\epsilon_0 > 0 \) such that \(|f(x_n) - f(y_n)| \geq \epsilon_0 \)

Example 1.6. Define \(f(x) := 1/x \) for all \(x \geq 0 \). Show that \(f \) is not uniformly continuous on \((0, 2)\).

Solution. Consider \((x_n := 1/n) \) and \((y_n := 1/n^2) \). Then \(\lim |x_n - y_n| = |1/n - 1/n^2| = 0 \). However, we have \(|f(x_n) - f(y_n)| = \left| n^2 - n \right| = n(n-1) \geq n \geq 1 \) for all \(n \geq 2 \). It follows by considering suitable tail subsequences that the divergence criteria is satisfied. Hence \(f \) is not uniformly continuous on \((0, 2)\)

Quick Practice.

1. For each of the following, \(f \) is a real-valued function defined on a subset \(A \subset \mathbb{R} \). Determine if \(f \) is uniformly continuous on \(A \) by definition.

a) \(f(x) = x^2 \), \(A = [0, 1] \)

b) \(f(x) = x^2 \), \(A = \mathbb{R} \)

c) \(f(x) = \frac{1}{x-3} \), \(A = \mathbb{R} \backslash \{3\} \)

d) \(f(x) = \sin(1/x) \), \(A = (0, \infty) \)

e) \(f(x) = x \sin x \), \(A = \mathbb{R} \)

f) \(f(x) = \inf \{|y-x| : y \notin \mathbb{Q} \} \), \(A = \mathbb{R} \)

2. (P. 164, Q9). Let \(f : A \to \mathbb{R} \) be uniformly continuous such that \(\inf \{|f(x)| : x \in A\} > 0 \). Show that \(1/f \) is uniformly continuous on \(A \).

3. (P. 164, Q10). Let \(f : A \to \mathbb{R} \) be uniformly continuous. Suppose \(A \) is bounded then \(f(A) \) is bounded.

4. (P. 164, Q12). Let \(f : [0, \infty) \to \mathbb{R} \) be continuous. Suppose \(f \) is uniformly continuous on \([a, \infty)\) for some \(a > 0 \). Show that \(f \) is uniformly continuous on \([0, \infty)\)

5. (Uniform Continuous Extension Theorem) Let \(f : Q \to \mathbb{R} \) be a uniformly continuous function.

a) Show that if \(g, h : \mathbb{R} \to \mathbb{R} \) are continuous functions such that \(g \mid_Q = h \mid_Q = f \). Then \(g = h \) on \(\mathbb{R} \).

b) Show that there exists a unique continuous function \(\overline{f} : \mathbb{R} \to \mathbb{R} \) such that \(\overline{f} = f \) on \(\mathbb{Q} \).

c) Show that \(\overline{f} \) is uniformly continuous on \(\mathbb{R} \).

d) Is (b) true for continuous \(f \) in general?
2 Lipschitz Functions

Definition 2.1. Let \(f : A \to \mathbb{R} \) be a function. Then we say \(f \) to be Lipschitz on \(A \) if there exists \(L > 0 \) such that we have for all \(x, y \in A \) that
\[
|f(x) - f(y)| \leq L|x - y|
\]

Remark. A Lipschitz function is uniformly continuous and hence continuous.

Example 2.2. Show that \(f(x) := x^2 \) uniformly continuous on \([0, 1]\).

Solution. Let \(x, y \in [0, 1] \). We have \(|f(x) - f(y)| = |x^2 - y^2| = |x - y||x + y| \leq 2|x - y|\). Hence, \(f \) is Lipschitz on \([0, 1]\). It follows that \(f \) is uniformly continuous.

Example 2.3. Show that \(f(x) := \sqrt{x} \) is uniformly continuous, but not Lipschitz on \([0, 1]\).

Solution. The uniform continuity has been shown on last page. Now suppose \(f \) were Lipschitz. Then there exists \(C > 0 \) such that for all \(x \in (0, 1] \), we have \(|f(x) - f(0)| = \sqrt{x} \leq C|x|\). Hence, it follows that \(C^{-1} \leq \sqrt{x} \) for all \(x \in (0, 1] \). This implies that \(\inf\{\sqrt{x} : x \in (0, 1]\} > 0 \), which is a contradiction (why?).

3 Exercise

1. Let \(f : A \to \mathbb{R} \) be a function. We say that \(f \) satisfies property \((P) \) if there exists an increasing function \(\phi : [0, \infty) \to [0, \infty) \) with \(\lim_{t \to 0^+} \phi(t) = 0 \) such that for all \(x, y \in A \)
\[
|f(x) - f(y)| \leq \phi(|x - y|)
\]
Show that every function that satisfies property \((P) \) (on its domain) is uniformly continuous.

2. Let \(f : A \to \mathbb{R} \) be a function. Define
\[
\omega_f(t) := \sup\{|f(x) - f(y)| : |x - y| \leq t, x, y \in A\} \in [0, \infty]
\]
(a) Show that if \(f \) is uniformly continuous, then \(\omega_f(t) < \infty \) for all \(t \geq 0 \)
(b) Show that a function is uniformly continuous if and only if property \((P) \) (defined in Q1) is satisfied.
(c) Show that \(f \) is Lipschitz on \(A \) if and only if there exists \(L > 0 \) such that \(\omega_f(t) \leq Lt \) for all \(t \in [0, \infty) \).
Hence, show that every Lipschitz function is uniformly continuous.

3. Let \(f : A \to \mathbb{R} \). Then we define \(\text{Lip}(f) := \sup\{|f(x) - f(y)| : x \neq y \in A\} \in [0, \infty] \).
(a) Show that \(\text{Lip}(f) < \infty \) if and only if \(f \) is Lipschitz. Furthermore, if this is the case, we have \(\text{Lip}(f) := \inf\{L > 0 : |f(x) - f(y)| \leq L|x - y|\} \)
(b) Show that \(\text{Lip}(f) = 0 \) if and only if \(f \) is a constant function.
(c) Let \(f, g : A \to \mathbb{R} \) be Lipschitz. Show that \(f + g, \max\{f, g\} \) and \(\min\{f, g\} \) are Lipschitz functions. Furthermore, \(\text{Lip}(f + g) \leq \text{Lip}(f) + \text{Lip}(g) \) and \(\text{Lip}(\max\{f, g\}) \leq \max\{\text{Lip}(f), \text{Lip}(g)\} \)
(d) Show that \(\text{Lip}(fg) \leq \text{Lip}(f) \sup\{|g(x)| : x \in A\} + \text{Lip}(g) \sup\{|f(x)| : x \in A\} \) where we allow the supremums to be \(\infty \) for every \(f, g \) that is Lipschitz.
(e) Given an example that \(f, g \) are Lipschitz but the point-wise product \(fg \) is not.
Remark. For (b), we have \(\max\{f, g\}(x) := \max\{f(x), g(x)\} \) for all \(x \in A \). The minimum is defined similarly.

4. We say that a function \(f : A \to \mathbb{R} \) is a bi-Lipschitz function if there exist \(C_1, C_2 > 0 \) such that for all \(x, y \in A \)
\[
C_1|x - y| \leq |f(x) - f(y)| \leq C_2|x - y|
\]
(a) Let \(f : A \to \mathbb{R} \) be a bi - Lipschitz function. Show that \(f \) is injective. Furthermore, \(f : A \to f(A) \) and \(f^{-1} : f(A) \to A \) are Lipschitz functions.
(b) Show that if \(f : A \to \mathbb{R} \) is a bi-Lipschitz function, then \(A \) is bounded if and only if \(f(A) \) is bounded.
Furthermore \(A \) is closed if and only if \(f(A) \) is closed.
(c) Give examples to show that part (b) is not true if we relax \(f \) to be a homeomorphism onto its image, that is \(f \) is continuous with continuous inverse, instead of being bi-Lipschitz.
(You may assume the continuity properties of functions that you come across in high schools)
5. (Uniformly continuous maps can be "Lipschitz-ized"). Let \(f : A \to \mathbb{R} \) be uniformly continuous. Show that for all \(\theta > 0 \), there exists \(K(\theta) \) such that if \(x, y \in A \) are with \(|x - y| \geq \theta \), then \(|f(x) - f(y)| \leq K(\theta)|x - y| \).

6. (Lipschitz Extension Theorem/ Mc-Shane Extension Theorem) Let \(f : A \to \mathbb{R} \) be a Lipschitz function. For all \(a \in A \), define \(g(x) := f(a) + \text{Lip}(f)|x - a| \) for all \(x \in \mathbb{R} \). Define \(F : \mathbb{R} \to \mathbb{R} \) by considering the infimum \(F(x) := \inf\{g_a(x) : a \in A\} \) for all \(x \in \mathbb{R} \). Show that \(F \) is a Lipschitz function extending \(f \) (\(F |_A = f \)) such that \(\text{Lip}(F) = \text{Lip}(f) \).

7. This exercise gives a (short) proof of the uniform continuous theorem on a compact interval. Let \(f : I := [a, b] \to \mathbb{R} \) be continuous. Let \(\epsilon > 0 \). Define \(S := \{c \in [a, b] : c > a, |f(x) - f(y)| < \epsilon \text{ on } [a, c]\} \).
 (a) Show that \(\sup S = b \).
 (b) Using (a), show that \(f \) is uniformly continuous on \([a, b]\).

8. This exercise gives a proof of the uniform continuous theorem on a compact interval using the monotone convergence theorem together with an Exhaustion Argument. Let \(f : I := [a, b] \to \mathbb{R} \) be a continuous function. Let \(\epsilon > 0 \).
 (a) Show that there exists \(c > a \) such that for all \(x, y \in I \) we have \(|f(x) - f(y)| < \epsilon \).
 (b) Define \(A_1 := \{j \in \mathbb{N} : \exists \epsilon > 0 \text{ such that } \epsilon < |f(x) - f(y)| < \epsilon \text{ on } [a, c]\} \subset \mathbb{N} \). Show that \(j_1 := \min A_1 \) exists. (Hint: You may use the well-order property of \(\mathbb{N} \))
 (c) Define \(a_1 > a \) such that \(a_1 - a > 1/j_1 \) and \(|f(x) - f(y)| < \epsilon \text{ on } [a, a_1] \).
 Define \(A_2 := \{j \in \mathbb{N} : c - a_1 > \frac{1}{j_1}, |f(x) - f(y)| < \epsilon \text{ on } [a, a_1]\} \subset \mathbb{N} \). Show that \(j_2 := \min A_2 \) exists.
 (d) Show that there exists a strictly increasing sequence \((a_n)\) in \(I \) a sequence of natural numbers \((j_n)\) such that if \(a_0 := a \), we have
 i. \(\frac{1}{j_{n+1} + 1} \geq a_{n+1} - a_n > \frac{1}{j_{n+1}} \) for all \(n \geq 0 \)
 ii. if \(c > a \) is such that \(c - a_n > 0 \) and \(|f(x) - f(y)| < \epsilon \text{ on } [a, c] \), then we have \(\frac{1}{j_{n+1} + 1} \geq c - a_n \)
 (e) Define \(L := \lim a_n \) by the bounded monotone convergence theorem, show that \(L = b \).
 (f) Hence, show that \(f \) is uniformly continuous on \([a, b]\).

Remark. The technique used in this question is called Exhaustion Argument because the sequence \((a_n)\) is defined by considering the most optimal objects we can construct.

9. Let \(f : A \to \mathbb{R} \) be a function on some subset. We say that \(f \) is lower semi-continuous \((\text{lsc})\) at \(x \in A \) if for all \(\epsilon > 0 \), there exists \(\delta > 0 \) such that if \(|y - x| > \delta \) with \(y \in A \), then \(f(x) - f(y) < \epsilon \).
 a. Show that \(f \) is lower semi-continuous at \(x \in A \) if and only if sequences \((x_n)\) in \(A \) with \(\lim x_n = x \), we have \(f(x) \leq \lim \inf f(x_n) \).
 b. We say that \(f \) is lower semi-continuous on \(A \) if it is at every point of \(A \). Suppose \(A \) is compact and \(f \) is lower semi-continuous. Show that \(f \) bounded below and minimum is attained, that is,
 \[\inf\{f(x) : x \in A\} = \min\{f(x) : x \in A\} \]

10. Let \(f : A \to \mathbb{R} \) be a lower semi-continuous function (see the previous question for the definition).
 a. For all \(n \in \mathbb{N} \), define \(f_n(x) := \inf\{f(y) + n|x - y| : y \in X\} \) for all \(x \in A \). Show that \(f_n \) are well-defined continuous functions on \(A \).
 b. Show that there exists an increasing sequence of continuous functions \((g_n : A \to \mathbb{R})\), that is, \(g_n(x) \leq g_{n+1}(x) \) for all \(n \in \mathbb{N} \) and \(x \in A \), such that \(\lim_n g_n(x) = f(x) \) for all \(x \in A \).