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1 Uniform Continuity

Definition 1.1. Let f : A → R be a function where A ⊂ R. Then we call f to be uniformly continuous if
and only if for all ϵ > 0, there exists δ > 0 such that |x− y| < δ would imply |f(x)− f(y)| < ϵ.

Remark. Every uniformly continuous function is continuous on its domain. This can be checked from definition.

Example 1.2. Define f(x) :=
√
x for all x ≥ 0. Show that

a. f is uniformly continuous on [a, 1] for all a > 0.

b. f is uniformly continuous on [0, 1]

Solution. a. Let ϵ > 0. We first observe that for all x, y ∈ [a, 1], we have |f(x)− f(y)| =
∣∣√x−√

y
∣∣ =

|x− y| 1√
x+

√
y
≤ |x− y| 1√

a+
√
a
= |x− y| 1

2
√
a
. Hence by taking δ

2
√
a
< ϵ, we have |f(x)− f(y)| ≤ ϵ for all

x, y ∈ [a, 1].

b. Let ϵ > 0. First note that limx→0+ f(x) = 0. Hence there exists t > 0 such that |f(x)| < ϵ/2. It follows that
for all x, y ∈ [0, t), we have |f(x)− f(y)| < ϵ. Next, f is continuous at t ≥ 0. Hence, there exists δ1 > 0
such that if |x− t| < δ1 and x ≥ 0, we have |f(x)− f(t)| < ϵ/2. Furthermore, f is uniformly continuous
on [t, 1] by the first part. Therefore, there exists δ2 > 0 such that |f(x)− f(y)| < ϵ for all x, y ∈ [t, 1]
with |x− y| < δ2. Now take δ < δ1, δ2, t. Then for all x, y ∈ [0, 1] with |x− y| < δ, either x, y ∈ [0, t),
x, y ∈ B(t, δ1) or x, y ∈ [t, 1]. In any case, we have |f(x)− f(y)| < ϵ.

Theorem 1.3 (Uniformly Continuous Theorem). Let f : A → R be a continuous function with A ⊂ R. If A
is a compact set, then f is uniformly continuous.

Example 1.4. Let f : R → R be a funciton. Suppose limx→∞ f(x) and limx→−∞ f(x) exist. Show that f is
uniformly continuous.

Solution. Write L := limx→−∞ f(x) and R := limx→∞f(x). Let ϵ > 0. Then there exists a, b ∈ R such that
|f(x)− L| < ϵ/2 for all x ∈ (−∞, a) and |f(x)−R| < ϵ/2 for all x ∈ (b,∞). It follows from the triangle
inequality that |f(x)− f(y)| < ϵ when either x, y ∈ (−∞, a) or x, y ∈ (b,∞). Now note that [a, b] is a compact
interval. Therefore, f is uniformly continuous of [a, b] by the Uniformly Continuous Theorem. Therefore,
there exists δ > 0 such that |f(x)− f(y)| < ϵ when |x− y| < δ with x, y ∈ [a, b]. Note that f is continuous at
a, b. Hence, there exist δa, δb > 0 such that |f(x)− f(a)| < ϵ/2 for x ∈ B(a, δa) and |f(x)− f(b)| < ϵ/2 for
x ∈ B(b, δb). Now take δ < δa, δb. Let x, y ∈ R with |x− y| < δ. Then it must be the case that x, y ∈ (−∞, a),
x, y ∈ (b,∞), x, y ∈ [a, b] or x, y lying in the δa or δb neighborhood of a, b. It follows that |f(x)− f(y)| < ϵ

Proposition 1.5 (Divergence Criteria for Uniform Continuity). Let f : A → R be a function. Then f is not
uniformly continuous if and only if there exist sequences (xn) and (yn) in A with lim |xn − yn| = 0, and ϵ0 > 0
such that |f(xn)− f(yn)| ≥ ϵ0

Example 1.6. Define f(x) := 1/x for all x ≥ 0. Show that f is not uniformly continuous on (0, 2).

Solution. Consider (xn := 1/n) and (yn := 1/n2). Then lim |xn − yn| =
∣∣1/n− 1/n2

∣∣ = 0. However, we

have |f(xn)− f(yn)| =
∣∣n2 − n

∣∣ = n(n − 1) ≥ n ≥ 1 for all n ≥ 2. It follows by considering suitable tail
subsequences that the divergence criteria is satisfied. Hence f is not uniformly continuous on (0, 2)

Quick Practice.

1. For each of the following, f is a real-valued function defined on a subset A ⊂ R. Determine if f is
uniformly continuous on A by definition.

f(x) = x2, A = [0, 1]a) f(x) = x2, A = Rb) f(x) = 1
x−3 A = R\{3}c)

f(x) = sin(1/x), A = (0,∞)d) f(x) = x sinx, A = Re) f(x) = inf{|y − x| : y /∈ Q},
A = R

f)

2. (P. 164, Q9). Let f : A → R be uniformly continuous such that inf{|f(x)| : x ∈ A} > 0. Show that 1/f
is uniformly continuous on A.

3. (P. 164, Q10). Let f : A → R be uniformly continuous. Suppose A is bounded then f(A) is bounded.

4. (P. 164, Q12). Let f : [0,∞) → R be continuous. Suppose f is uniformly continuous on [a,∞) for some
a > 0. Show that f is uniformly continuous on [0,∞)

5. (Uniform Continuous Extension Theorem) Let f : Q → R be a uniformly continuous function.

(a) Show that if g, h : R → R are continuous functions such that g |Q= h |Q= f . Then g = h on R.
(b) Show that there exists a unique continuous function f : R → R such that f = f on Q.

(c) Show that f is uniformly continuous on R.
(d) Is (b) true for continuous f in general?
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2 Lipschitz Functions

Definition 2.1. Let f : A → R be a function. Then we say f to be Lipschitz on A if there exists L > 0 such
that we have for all x, y ∈ A that

|f(x)− f(y)| ≤ L|x− y|

Remark. A Lipschitz function is uniformly continuous and hence continuous.

Example 2.2. Show that f(x) := x2 uniformly continuous on [0, 1].

Solution. Let x, y ∈ [0, 1]. We have |f(x)− f(y)| =
∣∣x2 − y2

∣∣ = |x− y||x+ y| ≤ 2|x− y|. Hence, f is Lipschitz
on [0, 1]. It follows that f is uniformly continuous.

Example 2.3. Show that f(x) :=
√
x is uniformly continuous, but not Lipschitz on [0, 1]

Solution. The uniform continuity has been shown on last page. Now suppose f were Lipschitz. Then there
exists C > 0 such that for all x ∈ (0, 1], we have |f(x)− f(0)| =

√
x ≤ C|x|. Hence, it follows that C−1 ≤

√
x

for all x ∈ [0, 1]. This implies that inf{
√
x : x ∈ (0, 1]} > 0, which is a contradiction (why?).

3 Exercise

1. Let f : A → R be a function. We say that f satisfies property (P ) if there exists an increasing function
ϕ : [0,∞) → [0,∞) with limt→0+ ϕ(t) = 0 such that for all x, y ∈ A

|f(x)− f(y)| ≤ ϕ(|x− y|)

Show that every function that satisfies property (P ) (on its domain) is uniformly continuous.

2. Let f : A → R be a function. Define

ωf (t) := sup{|f(x)− f(y)| : |x− y| ≤ t, x, y ∈ A} ∈ [0,∞]

(a) Show that if f is uniformly continuous, then ωf (t) < ∞ for all t ≥ 0

(b) Show that a function is uniformly continuous if and only if property (P ) (defined in Q1) is satisfied.

(c) Show that f is Lipschitz on A if and only if there exists L > 0 such that ωf (t) ≤ Lt for all t ∈ [0,∞).
Hence, show that every Lipschitz function is uniformly continuous.

3. Let f : A → R. Then we define Lip(f) := sup{ |f(x)−f(y)|
|x−y| : x ̸= y ∈ A} ∈ [0,∞].

(a) Show that Lip(f) < ∞ if and only if f is Lipscthiz. Furthermore, if this is the case, we have
Lip(f) := inf{L > 0 : |f(x)− f(y)| ≤ L|x− y|}

(b) Show that Lip(f) = 0 if and only if f is a constant function.

(c) Let f, g : A → R be Lipschitz. Show that f + g,max{f, g} and min{f, g} are Lipschitz functions.
Furthermore, Lip(f + g) ≤ Lip(f) + Lip(g) and Lip(max{f, g}) ≤ max{Lip(f),Lip(g)}}

(d) Show that Lip(fg) ≤ Lip(f) sup{|g(x)| : x ∈ A} + Lip(g) sup{|f(x)| : x ∈ A} where we allows the
supremums to be ∞ for every f, g that is Lipschitz.

(e) Given an example that f, g are Lipschitz but the point-wise product fg is not.

Remark. For (b), we have max{f, g}(x) := max{f(x), g(x)} for all x ∈ A. The minimum is defined
similarly.

4. We say that a function f : A → R is a bi-Lipschitz function if there exist C1, C2 > 0 such that for all
x, y ∈ A

C1|x− y| ≤ |f(x)− f(y)| ≤ C2|x− y|

(a) Let f : A → R be a bi - Lipschitz function. Show that f is injective. Furthermore, f : A → f(A)
and f−1 : f(A) → A are Lipschitz functions.

(b) Show that if f : A → R is a bi-Lipschitz function, then A is bounded if and only if f(A) is bounded.
Furthermore A is closed if and only if f(A) is closed.

(c) Give examples to show that part (b) is not true if we relax f to be a homeomorphism onto its
image, that is f is continuous with continuous inverse, instead of being bi-Lipschitz.
(You may assume the continuity properties of functions that you come across in high schools)
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5. (Uniformly continuous maps can be ”Lipschitz-ized”). Let f : A → R be uniformly continuous. Show that
for all θ > 0, there existsK(θ) such that if x, y ∈ A are with |x− y| ≥ θ, then |f(x)− f(y)| ≤ K(θ)|x− y|.

6. (Lipschitz Extension Theorem/ Mc-Shane Extension Theorem) Let f : A → R be a Lipschitz function.
For all a ∈ A, define g(x) := f(a) + Lip(f)|x− a| for all x ∈ R. Define F : R → R by considering the
infimum F (x) := inf{ga(x) : a ∈ A} for all x ∈ R. Show that F is a Lipschitz function extending f
(F |A= f) such that Lip(F ) = Lip(f).

7. This exercise gives a (short) proof of the uniform continuous theorem on a compact interval. Let f : I :=
[a, b] → R be continuous. Let ϵ > 0. Define S := {c ∈ [a, b] : c > a, |f(x)− f(y)| < ϵ on [a, c)}.

(a) Show that supS = b.

(b) Using (a), show that f is uniformly continuous on [a, b].

8. This exercise gives a proof of the uniform continuous theorem on a compact interval using the monotone
convergence theorem together with an Exhaustion Argument. Let f : I := [a, b] → R be a continuous
function. Let ϵ > 0.

(a) Show that there exists c > a such that for all x, y < c with x, y ∈ I we have |f(x)− f(y)| < ϵ.

(b) Define A1 := {j ∈ N | ∃c : c − a > 1
j , |f(x)− f(y)| < ϵ on [a, c)} ⊂ N. Show that j1 := minA1

exists. (Hint: You may use the well-order property of N)
(c) Define a1 > a such that a1 − a > 1/j1 and |f(x)− f(y)| < ϵ on [a, a1).

Define A2 := {j ∈ N : c− a1>
1
j , |f(x)− f(y)| < ϵ on [a, c)} ⊂ N. Show that j2 := minA2 exists.

(d) Show that there exists a strictly increasing sequence (an) in I a sequence of natural numbers (jn)
such that if a0 := a, we have

i.
1

jn+1 + 1
≥ an+1 − an >

1

jn+1
for all n ≥ 0

ii. if c > a is such that c− an > 0 and |f(x)− f(y)| < ϵ on [a, c), then we have
1

jn+1 + 1
≥ c− an

(e) Define L := lim an by the bounded monotone convergence theorem, show that L = b.

(f) Hence, show that f is uniformly continuous on [a, b].

Remark. The technique used in this question is called Exhaustion Argument because the sequence
(an) is defined by considering the most optimal objects we can construct.

9. Let f : A → R be a function on some subset. We say that f is lower semi-continuous (lsc.) at x ∈ A if
for all ϵ > 0, there exists δ > 0 such that if |y − x| > δ with y ∈ A, then f(x)− f(y) < ϵ.

a. Show that f is lower semi-continuous at x ∈ A if and only if sequences (xn) in A with limxn = x, we
have f(x) ≤ lim inf f(xn).

b. We say that f is lower semi-continuous on A if it is at every point of A. Suppose A is compact and
f is lower semi-continuous. Show that f bounded below and minimum is attained, that is,

inf{f(x) : x ∈ A} = min{f(x) : x ∈ A}

10. Let f : A → R be a lower semi-continuous function (see the previous question for the definition).

a. For all n ∈ N, define fn(x) := inf{f(y)+n|x− y| : y ∈ X} for all x ∈ A. Show that fn are well-defined
continuous functions on A

b. Show that there exists an increasing sequence of continuous functions (gn : A → R), that is, gn(x) ≤
gn+1(x) for all n ∈ N and x ∈ A, such that limn gn(x) = f(x) for all x ∈ A
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