MATH2058: Analysis I 2021-2022

Revision Test 2

Duration: 30 min

Answer ALL Questions

28 Oct 2021 8:30 - 9:00

Full Mark: 30

1 (15 marks). Let (x_n) be a sequence in \mathbb{R} . We say that (x_n) diverges to $+\infty$ and write $\lim x_n = +\infty$ if for all M > 0, there exists $N \in \mathbb{N}$ such that $x_n \ge M$ for all $n \ge N$.

- a) Let $x_n := n/\sqrt{n+1}$. Show that $\lim x_n = +\infty$ by definition.
- b) Let (x_n) and (y_n) be sequences of postive numbers such that $\lim \frac{x_n}{y_n} = +\infty$. Show that if $\lim y_n = +\infty$ then $\lim x_n = +\infty$.
- c) Is the converse of part (b) true? Prove your assertion.

2 (15 marks). Let (x_n) be a sequence. We denote $c(x_n) := \frac{1}{n}(x_1 + \cdots + x_n)$ for all $n \in \mathbb{N}$.

- a) Find an example of a sequence (x_n) such that $\lim c(x_n)$ exists but $\lim x_n$ does not.
- b) Show that in general if $\lim x_n$ exists then $\lim c(x_n)$ exists.