Answer ALL Questions

1 (10 marks). Suppose $\lim a_{n}=3$. Show by using definitions that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{2}+1}{a_{n}-2}=10
$$

2 (10 marks). Let $\left(x_{n}\right)$ be a sequence. Suppose $\lim (-1)^{n} x_{n}=0$. Is it true that $\left(x_{n}\right)$ converges? Prove your assertion and find the limit only if it converges.

3 (10 marks). Let $\left(x_{n}\right)$ be a sequence. Let $a>0$ be such that $x_{1}>\sqrt{a}$. Suppose that $\left(x_{n}\right)$ satisfies the recursive relation

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)
$$

for all $n \geq 1$. Show that $\left(x_{n}\right)$ converges and find its limit.

4 (20 marks). Let $\left(x_{n}\right)$ be a bounded sequence. We call $x \in \mathbb{R}$ a sequential cluster point of $\left(x_{n}\right)$ if for all $\epsilon>0$ and for all $N \in \mathbb{N}$ there exists $n \geq N$ such that $\left|x_{n}-x\right|<\epsilon$. Define

$$
E:=\left\{x \in \mathbb{R}: x \text { a sequential cluster point of }\left(x_{n}\right)\right\}
$$

i. Show that E is non-empty.
ii. Show that E is a singleton if and only if $\left(x_{n}\right)$ converges.

