MATH 2058-Revision Test 1 - Solutions

1 (10 marks). Suppose $\lim a_{n}=3$. Show by using definitions that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{2}+1}{a_{n}-2}=10
$$

Solution. Let $1 / 2>\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\left|a_{n}-3\right|<\epsilon / 11$ for all $n \geq N$ as $\lim a_{n}=3$. Now we approximate the distance inequality concerning the limit in the question: for all $n \in \mathbb{N}$, we have

$$
\left|\frac{a_{n}^{2}+1}{a_{n}-2}-10\right|=\left|\frac{a_{n}^{2}-10 a_{n}+21}{a_{n}-2}\right|=\left|a_{n}-3\right|\left|\frac{a_{n}-7}{a_{n}-2}\right|=\left|a_{n}-3\right| \underbrace{\left|1-\frac{5}{\left|a_{n}-2\right|}\right|}_{:=(I)}
$$

In addition we have for all $n \geq N$ that

$$
(I):=\left|1-\frac{5}{\left|a_{n}-2\right|}\right| \leq 1+\frac{5}{\left|a_{n}-2\right|} \leq 1+\frac{5}{|2-3|-\left|a_{n}-3\right|} \leq 1+\frac{5}{1-\left|a_{n}-3\right|} \leq 1+\frac{5}{1-1 / 2}=11
$$

by multiple uses of the triangle inequality. Hence we have for all $n \geq N$ that

$$
\left|\frac{a_{n}^{2}+1}{a_{n}-2}-10\right|=\left|a_{n}-3\right| \cdot(I) \leq \frac{\epsilon}{11} \cdot 11=\epsilon
$$

This proves the limit in the question.

2 (10 marks). Let $\left(x_{n}\right)$ be a sequence. Suppose $\lim (-1)^{n} x_{n}=0$. Is it true that $\left(x_{n}\right)$ converges? Prove your assertion and find the limit only if it converges.

Solution. Yes, $\left(x_{n}\right)$ converges. Let $\epsilon>0$. Since $\lim (-1)^{n} x_{n}=0$, it follows that there exists $N \in \mathbb{N}$ such that $\left|(-1)^{n} x_{n}\right|<\epsilon$ for all $n \geq N$. Note that in fact we have $\left|x_{n}-0\right|=\left|(-1)^{n} x_{n}\right|$ for all $n \in \mathbb{N}$. Combining this with the previous approximation, we obtain that for all $n \geq N$ that $\left|x_{n}\right|<\epsilon$. This prove $\lim x_{n}=0$

3 (10 marks). Let $\left(x_{n}\right)$ be a sequence. Let $a>0$ be such that $x_{1}>\sqrt{a}$. Suppose that $\left(x_{n}\right)$ satisfies the recursive relation

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)
$$

for all $n \geq 1$. Show that $\left(x_{n}\right)$ converges and find its limit.
Solution. We first show that $x_{n} \geq \sqrt{a}$ for all $n \in \mathbb{N}$ by induction. Note $x_{1} \geq \sqrt{a}$ is given. Now suppose $x_{k} \geq \sqrt{a}$ for some $k \in \mathbb{N}$ then we have

$$
x_{k+1}-\sqrt{a}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)-\sqrt{a}=\frac{1}{2 x_{k}}\left(x_{k}^{2}-2 \sqrt{a} x_{k}+a\right)=\frac{1}{2 x_{k}}(x-\sqrt{a})^{2} \geq 0
$$

as $x_{k} \geq \sqrt{a}>0$. It follows that $x_{k+1} \geq \sqrt{a}$. Hence $x_{n} \geq \sqrt{a}$ for all $n \in \mathbb{N}$ by induction, implying $\left(x_{n}\right)$ is bounded below (and well-defined since the fraction in the recursive relation is).
Next, we claim that $\left(x_{n}\right)$ is decreasing. Fix $n \in \mathbb{N}$. Then we have

$$
\frac{x_{n+1}}{x_{n}}=\frac{1}{2}\left(1+\frac{a}{x_{n}^{2}}\right) \leq \frac{1}{2}\left(1+\frac{a}{\sqrt{a}^{2}}\right)=\frac{1}{2}(1+1)=1
$$

by the claim that $x_{n} \geq \sqrt{a}$ for all $n \in \mathbb{N}$. It follows that $x_{n+1} \leq x_{n}$ for all $n \in \mathbb{N}$ and so $\left(x_{n}\right)$ is decreasing.
To conclude, $\left(x_{n}\right)$ is bounded below decreasing and so $\left(x_{n}\right)$ is convergent by the bounded monotone convergence theorem.

Next, we find the limit of $\left(x_{n}\right)$. Write $x:=\lim x_{n}$ and note that $\lim x_{n+1}=\lim x_{n}=x$ since $\left(x_{n+1}\right)$ is a (tail) subsequence. By rewriting the recursive relation it follows that we have

$$
x^{2}=\lim x_{n+1} \lim x_{n}=\lim _{n} x_{n+1} x_{n}=\lim \frac{1}{2}\left(x_{n} x_{n}+a\right)=\frac{1}{2}\left(\lim x_{n} \lim x_{n}+a\right)=\frac{1}{2}\left(x^{2}+a\right)
$$

It follows that $x^{2}=a$ and so $x=\sqrt{a}$ or $x=-\sqrt{a}$. The latter can be rejected since $x_{n} \geq 0$ for all $n \in \mathbb{N}$.

4 (20 marks). Let $\left(x_{n}\right)$ be a bounded sequence. We call $x \in \mathbb{R}$ a sequential cluster point of $\left(x_{n}\right)$ if for all $\epsilon>0$ and for all $N \in \mathbb{N}$ there exists $n \geq N$ such that $\left|x_{n}-x\right|<\epsilon$. Define

$$
E:=\left\{x \in \mathbb{R}: x \text { a sequential cluster point of }\left(x_{n}\right)\right\}
$$

i. Show that E is non-empty.
ii. Show that E is a singleton if and only if $\left(x_{n}\right)$ converges.

Solution.

1. Since $\left(x_{n}\right)$ is bounded, by $B-W$ theorem, there exists a convergence subsequence $\left(x_{k(n)}\right)$ where $k: \mathbb{N} \rightarrow \mathbb{N}$ is strictly increasing. Write $y:=\lim x_{k(n)}$. we claim that $y \in E$. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\left|x_{k(n)}-y\right|<\epsilon$ for all $n \geq N$ as $\lim x_{k(n)}=y$. Now pick $j \in \mathbb{N}$, suppose $j<N$, it follows that $k(N) \geq N \geq j$ such that $\left|x_{k(N)}-y\right|<\epsilon$. On the other hand, suppose $j \geq N$, we have that $k(j) \geq j$ and $\left|x_{k(j)}-y\right|<\epsilon$. By definition, y is a sequential cluster point.
2. Let B be the set of subsequential limits of $\left(x_{n}\right)$. The proof in Q1 in fact showed that $B \subset E$. We proceed with the observation.
(\Rightarrow). Suppose E is a singleton. Since $B \subset E$ and B is non-empty by the $\mathrm{B}-\mathrm{W}$ theorem, it follows that B is a singleton. Write $B=\{x\}$ then by definition of B every convergent subsequence converges to x. We clain that $\left(x_{n}\right)$ converges to x. Suppose not. Then there existed $\epsilon_{0}>0$ and a subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ such that $\left|y_{n}-x\right| \geq \epsilon_{0}$. Since $\left(y_{n}\right)$ is in turn bounded, it has a convergent subsequence $\left(z_{n}\right)$, which is also a subsequence of $\left(x_{n}\right)$. Hence by B being a singleton we have that $\lim z_{n}=x$. However, we also have $\left|z_{n}-x\right| \geq \epsilon_{0}$ for all $n \in \mathbb{N}$. It follows that contradiction arises as $0=\lim \left|z_{n}-x\right| \geq \epsilon_{0}$. It must be the case that $\lim x_{n}=x$.
(\Leftarrow). Now suppose $\left(x_{n}\right)$ converges. We show that E is a singleton. Write $x:=\lim x_{n}$. As $\left(x_{n}\right)$ is a subsequence of itself, it follows that $x \in B \subset E$ (where B is the set of subsequential limits of $\left.\left(x_{n}\right)\right)$ by Q1. It remains to show that $E \subset\{x\}$. Suppose $y \in E$. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x\right|<\epsilon$ for all $n \geq N$ as $\lim x_{n}=x$. Moreover by definition of a sequential cluster point, it follows that there exists $k(N) \geq N$ such that $\left|y-x_{k(N)}\right|<\epsilon$. Hence by the triangle inequality, we have

$$
|x-y| \leq\left|x-x_{k(N)}\right|+\left|x_{k(N)}-y\right| \leq \epsilon+\epsilon=2 \epsilon
$$

Since the choice of ϵ is arbitrary, it follows that $|x-y| \leq 0$ and so $|x-y|=0$. This imples $x=y$. Therefore $E=\{x\}$ is a singleton.

Abstract

Altenative solution: We can do this question with the help of liminf and limsup. From the Tutorial 4, we have shown that sequential cluster points are subsequential limits. Therefore in fact we have $B=E$ where B is the set of subsequential limits. (\Rightarrow). Suppose E is a singleton. Write $E=\{x\}$ where $x \in \mathbb{R}$. Then x is the only subsequential limit of $\left(x_{n}\right)$. Note that by results in the lecture notes that $\lim \sup x_{n}$ and $\lim \inf x_{n}$ are subsequential limits. Therefore $\lim \sup x_{n}=\lim \inf x_{n}=x$. It follows from the characterization of sequential convergence using limsup and liminf that $\left(x_{n}\right)$ converges with $\lim x_{n}=x$. (\Leftarrow). Suppose that $\left(x_{n}\right)$ converges. Then $\lim \inf x_{n}=\lim \sup x_{n}$. Note that from Tutorial 3 , we saw that $\lim \sup x_{n}$ is the greatest subsequential limit while $\lim \inf x_{n}$ is the minimum subsequential limit. In other words, $\lim \inf x_{n}=\inf E$ and $\lim \sup x_{n}=\sup E$ by identifying E with the set of subsequential limits. Therefore, $\sup E=\inf E$, implying the E has at most 1 element. By part (i), we have seen that E is non-empty. Therefore E is a singleton.

