## MATH 2058-Revision Test 2 - Solutions

1 (15 marks). Let $\left(x_{n}\right)$ be a sequence in $\mathbb{R}$. We say that $\left(x_{n}\right)$ diverges to $+\infty$ and write $\lim x_{n}=+\infty$ if for all $M>0$, there exists $N \in \mathbb{N}$ such that $x_{n} \geq M$ for all $n \geq N$.
a) Let $x_{n}:=n / \sqrt{n+1}$. Show that $\lim x_{n}=+\infty$ by definition.
b) Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of postive numbers such that $\lim \frac{x_{n}}{y_{n}}=+\infty$. Show that if $\lim y_{n}=+\infty$ then $\lim x_{n}=+\infty$.
c) Is the converse of part (b) true? Prove your assertion.

Solution.
a. Let $M>0$. Let $N \in \mathbb{N}$ such that $N>M$ by Archimedean Property. Suppose $n \geq 4 N^{2}$. We have $x_{n}=\frac{n}{\sqrt{1+n}} \geq$ $\frac{n}{\sqrt{3 n+n}}=\frac{\sqrt{n}}{2} \geq \frac{\sqrt{4 N^{2}}}{2}=N \geq M$. We conclude by definition.
b. Let $M>0$. There there exists $N_{1} \in \mathbb{N}$ such that $x_{n} / y_{n} \geq \sqrt{M}>0$ for all $n \geq N_{1}$ since $\lim x_{n} / y_{n}=+$. There exists $N_{2} \in \mathbb{N}$ such that $y_{n} \geq \sqrt{M}>0$ for all $n \geq N_{2}$. Now take $N:=\max \left\{N_{1}, N_{2}\right\}$. Then for all $n \geq N$, we have

$$
x_{n}=y_{n} \cdot \frac{x_{n}}{y_{n}} \geq \sqrt{M} \cdot \sqrt{M}=M>0
$$

It follows from definition that $\lim x_{n}=+\infty$
c. No. We can take $x_{n}:=n$ and $y_{n}:=1$ for all $n \in \mathbb{N}$. Then $\lim x_{n}=\lim x_{n} / y_{n}=\lim n=+\infty$ by the Archimedean Property. However, $\lim y_{n}=\lim 1=1$.

2 (15 marks). Let $\left(x_{n}\right)$ be a sequence. We denote $c\left(x_{n}\right):=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)$ for all $n \in \mathbb{N}$.
a) Find an example of a sequence $\left(x_{n}\right)$ such that $\lim c\left(x_{n}\right)$ exists but $\lim x_{n}$ does not.
b) Show that in general if $\lim x_{n}$ exists then $\lim c\left(x_{n}\right)$ exists.

## Solution.

a. Take $x_{n}:=(-1)^{n}$ for all $n \in \mathbb{N}$. Observe when $n$ is even, $c\left(x_{n}\right)=1 / n(-1+1-\cdots+1)=0$. When $n$ is odd, we have $c\left(x_{n}\right)=1 / n(-1+1-\cdots-1)=-1 / n$. It follows that for all $n \in \mathbb{N}$, we have

$$
\left|c\left(x_{n}\right)\right| \leq \frac{1}{n}
$$

It follows from Squeeze Theorem that $\lim c\left(x_{n}\right)=0$ as $\lim 1 / n=0$.
b. We first observe for all $x \in \mathbb{R}$ and sequences $\left(x_{n}\right)$, we have $c\left(x_{n}-x\right)=c\left(x_{n}\right)-x$ for all $n \in \mathbb{N}$. Therefore, it suffices to consider the case where $x=0$ (why?). Suppose $\lim x_{n}=0$. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $n \geq N$ would imply $\left|x_{n}\right|<\epsilon$. Furthermore, let $J \in \mathbb{N}$ such that $1 / J<\epsilon / \sum_{i=1}^{N}\left|x_{i}\right|$ (we can safely suppose that $\sum_{i=1}^{\bar{N}}\left|x_{i}\right| \neq 0$ (why?)). Now suppose $n \geq J, N$. Then we have

$$
\begin{aligned}
\left|c\left(x_{n}\right)\right|=\left|\frac{1}{n} \sum_{i=1}^{n} x_{i}\right| & =\left|\frac{1}{n} \sum_{i=1}^{N} x_{i}+\frac{1}{n} \sum_{i=N+1}^{n} x_{i}\right| \\
& \leq \frac{1}{n} \sum_{i=1}^{N}\left|x_{i}\right|+\frac{1}{n} \sum_{i=N+1}^{n}\left|x_{i}\right| \\
& \leq \frac{1}{J} \sum_{i=1}^{N}\left|x_{i}\right|+\frac{n-N}{n} \epsilon \leq \epsilon+\epsilon=2 \epsilon
\end{aligned}
$$

It follows that $\lim c\left(x_{n}\right)=0=\lim x_{n}$.
Remark. The technique in Q2b is to split the sum into two parts with a small tail and a head that can be somehow controlled. This is a common technique when dealing with limits of sums.

