MATH 2058 - Revision Test 2 - Solutions

1 (15 marks). Let (x_n) be a sequence in \mathbb{R} . We say that (x_n) diverges to $+\infty$ and write $\lim x_n = +\infty$ if for all M > 0, there exists $N \in \mathbb{N}$ such that $x_n \ge M$ for all $n \ge N$.

- a) Let $x_n := n/\sqrt{n+1}$. Show that $\lim x_n = +\infty$ by definition.
- b) Let (x_n) and (y_n) be sequences of postive numbers such that $\lim \frac{x_n}{y_n} = +\infty$. Show that if $\lim y_n = +\infty$ then $\lim x_n = +\infty$.
- c) Is the converse of part (b) true? Prove your assertion.

Solution.

a. Let M > 0. Let $N \in \mathbb{N}$ such that N > M by Archimedean Property. Suppose $n \ge 4N^2$. We have $x_n = \frac{n}{\sqrt{1+n}} \ge \sqrt{1+n}$

 $\frac{n}{\sqrt{3n+n}} = \frac{\sqrt{n}}{2} \ge \frac{\sqrt{4N^2}}{2} = N \ge M$. We conclude by definition.

b. Let M > 0. There there exists $N_1 \in \mathbb{N}$ such that $x_n/y_n \ge \sqrt{M} > 0$ for all $n \ge N_1$ since $\lim x_n/y_n = +$. There exists $N_2 \in \mathbb{N}$ such that $y_n \ge \sqrt{M} > 0$ for all $n \ge N_2$. Now take $N := \max\{N_1, N_2\}$. Then for all $n \ge N$, we have

$$x_n = y_n \cdot \frac{x_n}{y_n} \ge \sqrt{M} \cdot \sqrt{M} = M > 0$$

It follows from definition that $\lim x_n = +\infty$

- c. No. We can take $x_n := n$ and $y_n := 1$ for all $n \in \mathbb{N}$. Then $\lim x_n = \lim x_n/y_n = \lim n = +\infty$ by the Archimedean Property. However, $\lim y_n = \lim 1 = 1$.
- **2** (15 marks). Let (x_n) be a sequence. We denote $c(x_n) := \frac{1}{n}(x_1 + \cdots + x_n)$ for all $n \in \mathbb{N}$.
- a) Find an example of a sequence (x_n) such that $\lim c(x_n)$ exists but $\lim x_n$ does not.
- b) Show that in general if $\lim x_n$ exists then $\lim c(x_n)$ exists.

Solution.

a. Take $x_n := (-1)^n$ for all $n \in \mathbb{N}$. Observe when n is even, $c(x_n) = 1/n(-1+1-\cdots+1) = 0$. When n is odd, we have $c(x_n) = 1/n(-1+1-\cdots-1) = -1/n$. It follows that for all $n \in \mathbb{N}$, we have

$$|c(x_n)| \le \frac{1}{n}$$

It follows from Squeeze Theorem that $\lim c(x_n) = 0$ as $\lim 1/n = 0$.

b. We first observe for all $x \in \mathbb{R}$ and sequences (x_n) , we have $c(x_n - x) = c(x_n) - x$ for all $n \in \mathbb{N}$. Therefore, it suffices to consider the case where x = 0 (why?). Suppose $\lim x_n = 0$. Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $n \ge N$ would imply $|x_n| < \epsilon$. Furthermore, let $J \in \mathbb{N}$ such that $1/J < \epsilon/\sum_{i=1}^N |x_i|$ (we can safely suppose that $\sum_{i=1}^N |x_i| \ne 0$ (why?)). Now suppose $n \ge J, N$. Then we have

$$|c(x_n)| = \left|\frac{1}{n}\sum_{i=1}^n x_i\right| = \left|\frac{1}{n}\sum_{i=1}^N x_i + \frac{1}{n}\sum_{i=N+1}^n x_i\right|$$
$$\leq \frac{1}{n}\sum_{i=1}^N |x_i| + \frac{1}{n}\sum_{i=N+1}^n |x_i|$$
$$\leq \frac{1}{J}\sum_{i=1}^N |x_i| + \frac{n-N}{n}\epsilon \leq \epsilon + \epsilon = 2\epsilon$$

It follows that $\lim c(x_n) = 0 = \lim x_n$.

Remark. The technique in Q2b is to split the sum into two parts with a small tail and a head that can be somehow controlled. This is a common technique when dealing with limits of sums.