MATH 2058-HW 8-Solutions

1 (P. 148 Q2). Let $f(x):=1 / x^{2}$. Show that

1. f is uniformly continuous on $A:=[1, \infty)$
2. f is not uniformly continuous on $B:=(0, \infty)$

Solution.

i. Let $\epsilon>0$. Let $x, y \in A$. Then

$$
|f(x)-f(y)|=\left|\frac{1}{x^{2}}-\frac{1}{y^{2}}\right|=\left|\frac{x^{2}-y^{2}}{x^{2} y^{2}}\right|=|x-y|\left|\frac{x+y}{x^{2} y^{2}}\right| \leq|x-y|\left|\frac{1}{x}+\frac{1}{y}\right| \leq|x-y||1+1|=2|x-y|
$$

Hence if we take $\delta:=\epsilon / 2>0$. Then for all $x, y \in A$ with $|x-y|<\delta$, we have $|f(x)-f(y)| \leq 2|x-y| \leq$ $2 \delta<\epsilon$. It follows from definition that f is uniformly continuous on A.
ii. Define $x_{n}:=1 / \sqrt{n}$ and $y_{n}:=1 / n$ for all $n \in \mathbb{N}$. Then $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences in B. Then $\lim \left|x_{n}-y_{n}\right|=\lim |1 / \sqrt{n}-1 / n|=0$. However, for all $n \geq 2$, we have $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|n-n^{2}\right|=$ $|n||n-1| \geq n$. It follows that $\lim \left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\infty$. It follows from the divergence criteria of uniform continuity that f is not continuous on B

2 (P. 148 Q6). Let $f, g: A \rightarrow \mathbb{R}$ be uniformly continuous on A. Suppose they are both bounded, show that $f g$ is uniformly continuous on A.

Solution. Let $\epsilon>0$. Then there exists $\delta_{1}, \delta_{2}>0$ such that

$$
\begin{array}{ll}
|f(x)-f(y)|<\epsilon & |x-y|<\delta_{1} \\
|g(x)-g(y)|<\epsilon & |x-y|<\delta_{2}
\end{array}
$$

Now take $\delta:=\min \left\{\delta_{1}, \delta_{2}\right\} \leq \delta_{1}, \delta_{2}$. Then for all $x, y<\delta$, we have

$$
\begin{aligned}
|f(x) g(x)-f(y) g(y)| & =|f(x) g(x)-f(x) g(y)+f(x) g(y)-f(y) g(y)| \\
& \leq|f(x)||g(x)-g(y)|+|g(y)||f(x)-f(y)| \\
& \leq(\sup |f(x): x \in A|+\sup |g(x): x \in A|) \epsilon
\end{aligned}
$$

It follows that $f g$ is uniformly continuous on A.
3 (P. 148 Q7). Let $f(x):=x$ and $g(x):=\sin x$. Show that
i. f and g are uniformly continuous on \mathbb{R}
ii. Show that $f g$ is not uniformly continuous on \mathbb{R}

Solution.

i. We first show f is uniformly continuous on \mathbb{R} : let $\epsilon>0$. Then take $\delta:=\epsilon$. It follows that if $x, y \in \mathbb{R}$ with $|x-y|<\delta$ then $|f(x)-f(y)|=|x-y|<\delta=\epsilon$.
Next, we show that g is uniformly continuous on \mathbb{R}. Here we use the fact that $|\sin x| \leq|x|$ for all $x \in \mathbb{R}$. It follows that

$$
|g(x)-g(y)|=|\sin x-\sin y|=\left|2 \sin \left(\frac{x-y}{2}\right) \cos \left(\frac{x+y}{2}\right)\right| \leq\left|2 \sin \left(\frac{x-y}{2}\right)\right| \leq 2 \frac{|x-y|}{2}=|x-y|
$$

Hence, g is a 1-Lipschitz function on \mathbb{R}. It follows that g is uniformly continuous.
ii. Take $x_{n}:=2 n \pi$ and $y_{n}:=2 n \pi+1 / n$. Then $f g\left(x_{n}\right)=0$ while $f g\left(y_{n}\right)=(2 n \pi+1 / n) \sin (1 / n)$ for all $n \in \mathbb{N}$. Note that by the $\operatorname{limit} \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, we have that $\lim _{n} \frac{\sin 1 / n}{1 / n}=1$ using sequential criteria. It follows that

$$
\lim f g\left(y_{n}\right)=\lim 2 n \pi \sin (1 / n)+\lim 1 / n \sin (1 / n)=2 \pi+0=2 \pi
$$

Hence, we have $\lim \left|x_{n}-y_{n}\right|=|1 / n|=0$, but $\lim \left|f g\left(x_{n}\right)-f g\left(y_{n}\right)\right|=\lim \left|0-f g\left(y_{n}\right)\right|=\lim \left|f g\left(y_{n}\right)\right|=2 \pi$ It follows from the divergence criteria for uniform continuous that $f g$ is not uniform continuous on \mathbb{R}.

