MATH 2058-HW 7-Questions

1 (P. 129 Q9). Let $A \subset B \subset \mathbb{R}$ be subsets of \mathbb{R}. Let $f: B \rightarrow \mathbb{R}$ be a function and $g: A \rightarrow \mathbb{R}$ be the restriction of f on A, that is, $g(x)=f(x)$ for all $a \in A$.
i. Show that if f is continuous at $c \in A$, then g is continuous at c.
ii. Give an example to illustrate that if g is continuous at $c \in A$, it is not necessary that f is continuous at c.

2 (P. 140 Q7). Consider the equation

$$
x=\cos x
$$

i. Show that the equation has a solution on the intevral $[0, \pi / 2]$
ii. Using the Bisection Method and a calculator, find an approximate solution to the equation with error less than 10^{-3}

