MATH 2058-HW 6-Solutions

1 (P. 110 Q15). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x):=\left\{\begin{array}{ll}x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$.
a. Show that f has a limit at $x=0$.
b. Let $c \neq 0$. Show that f does not have a limit at c using a sequential argument.

Solution.

a. We claim that $\lim _{x \rightarrow 0} f(x)=0$ and proceed to prove it using the definition of functional limits.

Let $\epsilon>0$. Take $\delta:=\epsilon$. Suppose $x \in \mathbb{R}$ with $0<|x|<\delta$. If $x \in \mathbb{Q}$, then it holds that $|f(x)-0|=|x-0|<$ $\delta=\epsilon$. If $x \notin \mathbb{Q}$, then it holds that $|f(x)-0|=|0-0|=0<\delta=\epsilon$. It follows that $|f(x)-0|<\epsilon$ for all $x \in \mathbb{R}$ with $0<|x|<\delta$. By definition, $\lim _{x \rightarrow 0} f(x)=0$
b. Since c is a cluster point(why?), the sequential criteria for limits says that $\lim _{x \rightarrow c} f(x)$ exists if and only if there exists $L \in \mathbb{R}$ such that every sequence $\left(x_{n}\right)$ converging to c with $x_{n} \neq 0$ for all $n \in \mathbb{N}$ satisfies that $\lim f\left(x_{n}\right)=L$. It suffices to find two sequences converging to c whose limits converge differently.
Note that \mathbb{Q} is dense. We can pick a sequence $\left(q_{n}\right)$ of rational numbers such that $\lim q_{n}=c$ (for example, we can pick the sequence with $\left|q_{n}-c\right|<1 / n$ for all $\left.n \in \mathbb{N}\right)$. Note also that $f\left(q_{n}\right)=q_{n}$ for all $n \in \mathbb{N}$ by definition of f. It follows that $\lim f\left(q_{n}\right)=\lim q_{n}=c$.
On the other hand $\mathbb{R} \backslash \mathbb{Q}$ is also dense. We can pick a sequence $\left(\alpha_{n}\right)$ of irrational numbers such that $\lim \alpha_{n}=c$. It then follows that $\lim f\left(\alpha_{n}\right)=\lim 0=0$. Hence, $\lim f\left(\alpha_{n}\right)=0 \neq c=\lim f\left(q_{n}\right)$ where $\left(\alpha_{n}\right)$ and $\left(q_{n}\right)$ converges to c. This shows that $\lim _{x \rightarrow c} f(x)$ does not exist.

2 (P. 116 Q4). Prove the following assertions:
a. The limit $\lim _{x \rightarrow 0} \cos (1 / x)$ does not exist.
b. The limit $\lim _{x \rightarrow 0} x \cos (1 / x)$ exists and is equal to 0 .

Solution.

a. Method 1: Sequential Criteria. We can use this method because 0 is a cluster point of the domain of $f(x):=\cos (1 / x)$.
Consider $x_{n}:=\frac{1}{2 n \pi}$ and $y_{n}:=\frac{1}{(2 n+1) \pi}$ for all $n \in \mathbb{N}$. Then it is clear that $\lim x_{n}=\lim y_{n}=0$ (for instance by Squeeze Theorem). However we have $\cos \left(1 / x_{n}\right)=\cos (2 n \pi)=1$ for all $n \in \mathbb{N}$ while $\cos \left(1 / y_{n}\right)=$ $\cos ((2 n+1) \pi)=-1$ for all $n \in \mathbb{N}$. It follows that $\lim \cos \left(1 / x_{n}\right)=1 \neq-1=\lim \cos \left(1 / y_{n}\right)$. It follows from the sequential criteria that $\lim _{x \rightarrow 0} \cos (1 / x)$ does not exist.

Method 2: Cauchy Criteria. Write $f(x):=\cos (1 / x)$ for all $x \neq 0$. Take $\epsilon_{0}:=2$. Let $\delta>0$. Then by the Archimedean property, there exists $n_{\delta} \in \mathbb{N}$ such that $0<\frac{1}{2 n_{\delta} \pi}, \frac{1}{\left(2 n_{\delta}+1\right) \pi}<\delta$. Now take $x_{\delta}:=1 / 2 n_{0} \pi$ and $y_{0}=1 /\left(2 n_{\delta}+1\right) \pi$. Then we have

$$
\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right|=|1-(-1)| \geq 2=\epsilon_{0}
$$

It follows from the negation of Cauchy Criteria that the limit does not exist.
b. We proceed by using the definition of functional limits. Write $g(x):=x \cos (1 / x)$ for $x \neq 0$. Let $\epsilon>0$. Take $\delta:=\epsilon$. Now suppose $x \in(-\delta, \delta) \backslash\{0\}$. Then we have

$$
|g(x)-0|=|x \cos (1 / x)|=|x||\cos (1 / x)| \leq|x|<\delta=\epsilon
$$

in which we have used the fact that the image of cosine is bounded by 1 . It follows from the definition that $\lim _{x \rightarrow 0} \cos (1 / x)=0$

3 (P. 129 Q10). Show that the absolute function function $f(x):=|x|$ defined on \mathbb{R} is continuous everywhere on \mathbb{R}.

Solution. We proceed using the definition of continuity. Let $c \in \mathbb{R}$. Let $\epsilon>0$. Take $\delta:=\epsilon$. Now suppose $x \in \mathbb{R}$ such that $|x-c|<\delta$. It follows that

$$
|f(x)-f(c)|=||x|-|c|| \leq|x-c|<\delta=\epsilon
$$

in which we have used the triangle inequality. It follows that f is continuous at $c \in \mathbb{R}$. Since c is arbitrary, we conclude that f is continuous everywhere.

