MATH 2058-HW 5-Solutions

1 (P. 91 Q3). Show directly from the definition that the following sequences $\left(x_{n}\right)$ are not Cauchy sequences.
a) $x_{n}:=(-1)^{n}$
b) $x_{n}:=n+\frac{(-1)^{n}}{n}$
c) $x_{n}:=\log n$
a. Take $\epsilon_{0}:=1$. Pick $n \in \mathbb{N}$. Take $k(n)=2 n$ and $j(n)=2 n+1$ for all $n \in \mathbb{N}$. Then $k(n) \geq n$ and $j(n) \geq n$ and

$$
\left|x_{k(n)}-x_{j(n)}\right|=\left|(-1)^{2 n}-(-1)^{2 n+1}\right|=2 \geq 1
$$

It follows from the negation of the definition that $\left(x_{n}\right)$ does not converge.
b. Pick $n \in \mathbb{N}$. Take $k(n):=4 n$ and $j(n):=2 n$ for all $n \in \mathbb{N}$. Then for all $n \in \mathbb{N}$, we have $k(n), j(n) \geq n$ and

$$
\left|x_{k(n)}-x_{j(n)}\right|=\left|4 n+\frac{1}{4 n}-2 n-\frac{1}{2 n}\right|=\left|2 n-\frac{1}{4 n}\right| \stackrel{(\star)}{=} 2 n-\frac{1}{4 n} \geq 2-\frac{1}{4} \geq 1
$$

The (\star) follows because $2 n \geq 1 / 4 n$ for all $n \geq 1$. It follows from the negation of the definition that $\left(x_{n}\right)$ does not converge.
c. Note that the natural base satisfies that $0<e<3$. Since the logarithmic is a strictly increasing, it follows that we have $1<\log 3$. Now for all $n \in \mathbb{N}$, we pick $k(n):=3 n$ and $j(n):=n$. Then it follows that we have

$$
\left|x_{k(n)}-x_{j(n)}\right|=|\log 3 n-\log n|=|\log 3| \stackrel{(\star)}{=} \log 3 \geq 1
$$

It follows from the negation of the definition that $\left(x_{n}\right)$ does not converge.
Remark. You have to remove the absolute sign before comparing numbers (like the steps in (\star)) unless you are using triangle inequalities.

2 (P. 91 Q9). Let $r \in(0,1)$. Let $\left(x_{n}\right)$ be a sequence such that $\left|x_{n+1}-x_{n}\right|<r^{n}$ for all $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ is a Cauchy sequence.

Solution. Note that $\lim r^{n}=0$ as $r \in(0,1)$. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\left|r^{n}\right|<(1-r) \epsilon$ for all $n \geq N$. Now pick $m, n \geq N$ such that $m>n$. Then we have

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & =\left|x_{n}-x_{n+1}+x_{n+1}-\cdots-x_{m-1}+x_{m-1}-x_{m}\right| \\
& \leq\left|x_{n}-x_{n+1}\right|+\cdots+\left|x_{m-1}-x_{m}\right| \\
& \leq r^{n}+\cdots+r^{m-1} \\
& =r^{n}\left(1+\cdots r^{m-n-1}\right) \\
& =r^{n} \frac{1-r^{m-n}}{1-r}
\end{aligned}
$$

by both the summation of geometric series and triangle inequalities. Finally note that $\left(r^{n}\right)$ is strictly decreasing and $r^{n} \in(0,1)$ for all $n \in \mathbb{N}$. This implies that

$$
\left|x_{n}-x_{m}\right| \leq r^{n} \frac{1-r^{m-n}}{1-r} \leq r^{n} \frac{1}{1-r} \leq r^{N} \frac{1}{1-r}<(1-r) \epsilon \frac{1}{1-r}=\epsilon
$$

for all $n, m \geq N$
Remark. Please try to address the main assumptions in questions ($r \in(0,1)$ this time) whenever giving solutions. Otherwise, marks may be deducted.

