
 

MATH 2050C Lecture 24 Apr 19

Reminder Last ProblemSet 12 due this Friday

Mock Exam this Thursday 9 15AM

Some extended concepts about limits
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Back to continuity
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Q Can we classify the types of discontinuities

for simpler functions f A B

A Yes for monotone functions
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GOAL Monotone functions defined on Ca b

Only have jump discontinuities
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Denote The jump of f at C as
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Remarks Without monotonicity it can be much worse
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Existence of inverse for monotone fan
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