THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050A Mathematical Analysis I (Fall 2021) Suggested Solution of Homework 5

If you find any errors or typos, please email me at yzwang@math.cuhk.edu.hk

1. (2 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and $S=\{x \in \mathbb{R}: f(x)=0\}$. Show that S is closed in the sense that if $x_{n} \in S$ and $x_{n} \rightarrow x$, then $x \in S$.

Solution: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence such that $x_{n} \in S$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$. Then $f\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$. Since f is continuous, we have that

$$
f(x)=\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0 .
$$

Therefore $x \in S$.
2. (2 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous functions such that

$$
f\left(m 2^{-n}\right)=m 2^{-n}
$$

for all $m \in \mathbb{Z}, n \in \mathbb{N}$. Show that $f(x)=x$ for all $x \in \mathbb{R}$.

Solution: Let $x \in \mathbb{R}$. For any $n \in \mathbb{N}$, we can find $m_{n} \in \mathbb{Z}$ such that

$$
x 2^{n} \leq m_{n}<x 2^{n}+1
$$

Let $x_{n}=m_{n} 2^{-n}$. Then

$$
x \leq x_{n}<x+2^{-n} .
$$

By squeeze theorem, we have that $\lim _{n \rightarrow \infty} x_{n}=x$. Since $m_{n} \in \mathbb{Z}$ and $n \in \mathbb{N}$, we have that $f\left(x_{n}\right)=x_{n}$. By continuity of f, we can conclude that

$$
f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}=x .
$$

3. (2 points) Let $I=[0, \pi / 2]$ and $f: I \rightarrow \mathbb{R}$ be a function given by $f(x)=\sup \left\{x^{2}, \cos x\right\}$ for $x \in I$. Show that there is $x_{0} \in I$ such that $f\left(x_{0}\right)=\min \{f(x): x \in I\}$. Moreover, $x_{0}^{2}=\cos x_{0}$.

Solution: Since I is a closed interval, by Max-Min Theorem, to prove f attains a minimum in I, it suffices to show that f is continuous on I.
Let $h, g: I \rightarrow \mathbb{R}$ be two continuous functions.
We prove the claim that $f(x)=\sup \{h(x), g(x)\}$ is continuous at any $c \in I$.
(1) If $h(c)=g(c)$, for any $\epsilon>0$, there exist $\delta_{1}, \delta_{2}>0$ such that $|h(x)-h(c)|<\epsilon$ for $|x-c|<\delta_{1}$ and $|g(x)-h(c)|<\epsilon$ for $|x-c|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. For $|x-c|<\delta$, we have that

$$
|f(x)-f(c)| \leq \sup \{|h(x)-h(c)|,|g(x)-h(c)|\}<\epsilon
$$

It follows that f is continuous at c.
(2) If $h(c) \neq g(c)$, without loss of generality, we can assume that $h(c)=f(c)>g(c)$. For $\epsilon=\frac{h(c)-g(c)}{2}$, there exist $\delta_{1}, \delta_{2}>0$ such that $|h(x)-h(c)|<\epsilon$ for $|x-c|<\delta_{1}$ and $|g(x)-g(c)|<\epsilon$ for $|x-c|<\delta_{2}$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. For $|x-c|<\delta$, we have that

$$
g(x)<\frac{h(c)+g(c)}{2}<h(x) .
$$

Hence $f(x)=h(x)$ for $|x-c|<\delta$. Therefore, f is continuous at c.
Alternatively, we can also prove the continuity of f by the fact that

$$
f=\frac{1}{2}(h+g+|h-g|) .
$$

From the claim above, we can find $x_{0} \in I$ such that $f\left(x_{0}\right)=\min \{f(x): x \in I\}$.
Let $F(x)=x^{2}-\cos (x)$. We have that F is continuous, strictly increasing with $F(0)=-1<0$ and $F\left(\frac{\pi}{2}\right)=\frac{\pi^{2}}{4}>0$. Then there exists $b \in I$ such that $F(b)=0$. Suppose $x_{0} \neq b$. Let $x^{\prime}=\frac{x_{0}+b}{2} \in I$.
(1) If $x_{0}>b$, then $x_{0}>x^{\prime}>b$. By monotonicity of $F, F\left(x_{0}\right)>F\left(x^{\prime}\right)>0$. Then $f\left(x_{0}\right)=x_{0}^{2}>x^{\prime 2}=f\left(x^{\prime}\right)$, contradicting the minimality of $f\left(x_{0}\right)$.
(2) If $x_{0}<b$, then $x_{0}<x^{\prime}<b$. By monotonicity of $F, F\left(x_{0}\right)<F\left(x^{\prime}\right)<0$. Then $f\left(x_{0}\right)=\cos \left(x_{0}\right)>\cos \left(x^{\prime}\right)=f\left(x^{\prime}\right)$, also a contradiction.

Therefore, $F\left(x_{0}\right)=0$, which implies that $x_{0}^{2}=\cos \left(x_{0}\right)$.
4. (2 points) Show that $f(x)=x^{-1}$ on $(a,+\infty)$ is uniformly continuous if $a>0$. Is the result still true if $a=0$? Give your reasoning.

Solution: Let $a>0$. For any $\epsilon>0$, let $\delta=a^{2} \epsilon$. Then for $x_{1}, x_{2}>a$, whenever $\left|x_{1}-x_{2}\right|<\delta$, we have that

$$
\left|x_{1}^{-1}-x_{2}^{-1}\right|=\frac{\left|x_{1}-x_{2}\right|}{\left|x_{1} x_{2}\right|} \leq a^{-2}\left|x_{1}-x_{2}\right|<\epsilon .
$$

Hence x^{-1} is uniformly continuous on $(a,+\infty)$.
For $a=0$, let $x_{n}=\frac{1}{n}$ and $u_{n}=\frac{1}{n+1}$ be two seuqences in $(0,+\infty)$.
Then $\lim _{n \rightarrow \infty}\left|x_{n}-u_{n}\right|=0$ and $\lim _{n \rightarrow \infty}\left|x_{n}^{-1}-u_{n}^{-1}\right|=1>0$. Hence x^{-1} is not uniformly continuous on $(0,+\infty)$.
5. (2 points) Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a function such that for all $x, y \in \mathbb{R}$,

$$
|f(x)-f(y)| \leq \Lambda|x-y|^{1 / 2}
$$

for some $\Lambda>0$. Show that f is uniformly continuous. Is the converse also true? Give your reasoning.

Solution: For any $\epsilon>0$, let $\delta=\Lambda^{-2} \epsilon^{2}$. Then for $x_{1}, x_{2} \in[0,1]$, whenever $\left|x_{1}-x_{2}\right|<\delta$, we have that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \Lambda\left|x_{1}-x_{2}\right|^{\frac{1}{2}}<\epsilon .
$$

Hence f is uniformly continuous on $[0,1]$.
Conversely, $f(x)=x^{\frac{1}{4}}$ is a continuous function on $[0,+\infty)$, thus is uniformly continuous on $[0,1]$. However,

$$
\frac{|f(x)-f(0)|}{|x-0|^{\frac{1}{2}}}=x^{-\frac{1}{4}} \rightarrow \infty \quad \text { as } \quad x \rightarrow 0 .
$$

Therefore the converse is not true.

