MATH2048: Honours Linear Algebra II

Homework 1

Due: 2021-09-17 (Friday) 23:59

10 pts for each of the 10 questions. Please give reasons in your solutions.

- 1. Textbook (Friedberg). Sec. 1.2: Q12
- 2. Textbook (Friedberg). Sec. 1.3: Q19
- 3. Textbook (Friedberg). Sec. 1.3: Q28
- 4. Textbook (Friedberg). Sec. 1.4: Q15
- 5. Textbook (Friedberg). Sec. 1.5: Q15
- 6. Textbook (Friedberg). Sec. 1.6: Q24
- 7. Textbook (Friedberg). Sec. 1.6: Q29(a)
- 8. Textbook (Friedberg). Sec. 1.6: Q33b
- 9. (Quotient Space)

Let V be a vector space over F and W be a subspace of V. Prove that for any $\vec{v}_1, \vec{v}_2 \in V$, suppose $\vec{v}_1 + W = \vec{v}_2 + W$, then for any $\vec{v}_3 \in V$ satisfying $\vec{v}_3 + W \in V/M$, the following are true:

(a)
$$(\vec{v}_1 + W) + (\vec{v}_3 + W) = (\vec{v}_2 + W) + (\vec{v}_3 + W)$$

(b)
$$a \cdot (\vec{v_1} + W) = a \cdot (\vec{v_2} + W)$$

10. (Quotient Space)

Let V be a vector space over F and W be a subspace of V. Let the quotient space of V module W be $V/M = \{\vec{v} + M : \vec{v} \in V\}$. Prove that if the addition and scalar multiplication operations are defined as

•
$$(\vec{v}_1 + W) + (\vec{v}_2 + W) := (\vec{v}_1 + \vec{v}_2) + W$$

•
$$a \cdot (\vec{v} + W) := a \cdot \vec{v} + W$$

V/M is a vector space over F .