Assignment 7

Q7

7. Use the transformation in Exercise 3 to evaluate the integral

$$
\iint_{R}\left(3 x^{2}+14 x y+8 y^{2}\right) d x d y
$$

for the region R in the first quadrant bounded by the lines $y=-(3 / 2) x+1, y=-(3 / 2) x+3, y=-(1 / 4) x$, and $y=$ $-(1 / 4) x+1$.

Solution. 1.omit the "1st quadrant" condition in the question.
By letting

$$
\left\{\begin{array}{l}
\mathrm{u}=3 \mathrm{x}+2 \mathrm{y} \\
\mathrm{v}=\mathrm{x}+4 \mathrm{y}
\end{array}\right.
$$

the region of integral is changed to

$$
\left\{\begin{array}{l}
2 \leq u \leq 6 \\
0 \leq v \leq 4
\end{array}\right.
$$

The absolute value of the Jacobian of the transformation is $|J(u, v)|=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{10}$
Function $f=3 x^{2}+14 x y+8 y^{2}=u v$.
So the integral

$$
I=\int_{0}^{4} \int_{2}^{6} \frac{1}{10} u v d u d v=\frac{64}{5}
$$

2. consider the condition "1st quadrant" in the question.

From $x \geq 0$ we have $2 u \geq v$, from $y \geq 0$ we have $3 v \geq u$
The integral

$$
I=\int_{2}^{6} \int_{u / 3}^{4} \frac{1}{10} u v d v d u=\frac{64}{5}-\frac{16}{9}
$$

Q12

12. The area of an ellipse The area $\pi a b$ of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ can be found by integrating the function $f(x, y)=1$ over the region bounded by the ellipse in the $x y$ plane. Evaluating the integral directly requires a trigonometric substitution. An easier way to evaluate the integral is to use the transformation $x=a u, y=b v$ and evaluate the transformed integral over the disk $G: u^{2}+v^{2} \leq 1$ in the $u v$-plane. Find the area this way.

Solution.

To calculate the integral we use generalized polar coordinates by making the following change of variables:

$$
x=a r \cos \theta, \quad y=b r \sin \theta
$$

The absolute value of the Jacobian of the transformation is $|I|=a b r$.
The integral in the new coordinates becomes

$$
\begin{aligned}
I & =\iint_{U} 1 d x d y \\
& =a b \iint_{U^{\prime}} r d r d \theta .
\end{aligned}
$$

The region of integration U^{\prime} in polar coordinates is a rectangular and defined by the inequalities

$$
0 \leq r \leq 1, \quad 0 \leq \theta \leq 2 \pi .
$$

Then the area can be written as

$$
I=a b \iint_{U^{\prime}} r d r d \theta=a b \int_{0}^{2 \pi} d \theta \int_{0}^{1} r d r=a b \cdot 2 \pi \cdot \frac{1}{2}=a b \pi
$$

Q16

16. Use the transformation $x=u^{2}-v^{2}, y=2 u v$ to evaluate the integral

$$
\int_{0}^{1} \int_{0}^{2 \sqrt{1-x}} \sqrt{x^{2}+y^{2}} d y d x
$$

(Hint: Show that the image of the triangular region G with vertices $(0,0),(1,0),(1,1)$ in the $u v$-plane is the region of integration R in the $x y$-plane defined by the limits of integration.)

Solution.

The new region is the above-mentioned triangular.

The absolute value of the Jacobian of the transformation is $|I|=\left|\begin{array}{cc}2 u & -2 v \\ 2 v & 2 u\end{array}\right|=4\left(u^{2}+v^{2}\right)$.
Function $f=\sqrt{u^{4}+v^{4}-2 u^{2} v^{2}+4 u^{2} v^{2}}=u^{2}+v^{2}$
The integral in the new coordinates becomes

$$
\int_{0}^{1} \int_{0}^{u} 4\left(u^{2}+v^{2}\right)^{2} d v d u=\frac{56}{45}
$$

Q20

20. Let D be the region in $x y z$-space defined by the inequalities

$$
1 \leq x \leq 2, \quad 0 \leq x y \leq 2, \quad 0 \leq z \leq 1 .
$$

Evaluate

$$
\iiint_{D}\left(x^{2} y+3 x y z\right) d x d y d z
$$

by applying the transformation

$$
u=x, \quad v=x y, \quad w=3 z
$$

and integrating over an appropriate region G in $u v w$-space.

Solution.

the region of integral is changed to

$$
\left\{\begin{array}{l}
1 \leq u \leq 2 \\
0 \leq v \leq 2 \\
0 \leq w \leq 3
\end{array}\right.
$$

The absolute value of the Jacobian of the transformation is $|I|=\frac{1}{3 u}$.
Function $f=u v+v w$
The integral in the new coordinates becomes

$$
\frac{1}{3} \iiint_{U^{\prime}} v+\frac{v w}{u}=2+3 \ln 2
$$

