1. Solution.

Denote the interval $(0, +\infty)$ by *I*. Let $f: I \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{1}{2} \left(x - \frac{1}{x} \right)$ for any $x \in I$.

- (a) Pick any $x, w \in I$. Suppose f(x) = f(w). Then $\frac{1}{2}\left(x-\frac{1}{x}\right) = \frac{1}{2}\left(w-\frac{1}{w}\right).$ We have $x^2w - w = w^2x - x$. Therefore $xw(x - w) = x^2w - w^2x = w - x$. Hence (xw + 1)(x - w) = 0. Since $x, w \in I$, we have x > 0, w > 0 and xw + 1 > 0. Therefore x - w = 0. Hence x = w. It follows that f is injective.
- (b) Pick any $y \in \mathbb{R}$. Take $x = y + \sqrt{y^2 + 1}$. Note that $x \in I$. We have $f(x) = \frac{1}{2}\left(x - \frac{1}{x}\right) = \frac{1}{2}\left(y + \sqrt{y^2 + 1} - \frac{1}{y + \sqrt{y^2 + 1}}\right)$ $=\frac{1}{2}\left[y+\sqrt{y^2+1}-\frac{y-\sqrt{y^2+1}}{(y+\sqrt{y^2+1})(y-\sqrt{y^2+1})}\right]=\frac{1}{2}(y+\sqrt{y^2+1}+y-\sqrt{y^2+1})=y.$

It follows that f is surjective.

2. —

3. Answer.

- (a) Yes.
- (b) Yes.

4. Answer.

- (a) No.
- (b) No.

5.(a) **Solution.**

- i. Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is surjective. Pick any $z \in C$. Since $g \circ f$ is surjective, there exists some $x \in A$ such that $z = (g \circ f)(x)$. Define y = f(x). We have $y \in B$. For the same $x \in A$, $y \in B$ and $z \in C$, we have $g(y) = g(f(x)) = (g \circ f)(x) = z$. It follows that q is surjective.
- ii. Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. Suppose $g \circ f$ is injective. Pick any $x, w \in A$. Suppose f(x) = f(w). Then g(f(x)) = g(f(w)). Note that $(g \circ f)(x) = g(f(x))$ and $(g \circ f)(w) = g(f(w))$. Then $(g \circ f)(x) = (g \circ f)(w)$. Since $g \circ f$ is injective, we have x = w.
 - It follows that f is injective.

(b) -

6. —

7. —