MATH1050 Proof-writing Exercise 7

Advice.

- Study the Handouts Statements with several quantifiers, Dis-proofs (with emphasis on 'dis-proofs by counter-example') before answering the questions.
- Besides the handouts mentioned above, Question (6a) of Exercise 7 is also suggestive on what it takes to give a correct argument with dis-proof by counter-example.
- 1. Consider the statement (\star) below.
 - (*) Let $x, y, z \in \mathbb{N}$. Suppose x + y, y + z are divisible by 3. Then x + z is divisible by 3.
 - (a) Write down the negation of the statement (\star) .
 - (b) Dis-prove the statement (\star) .
- 2. Dis-prove the statements below:
 - (a) Suppose $x, y \in \mathbb{N}$. Then $\sqrt{x^2 + y^2} \in \mathbb{N}$.
 - (b) For any $s, t \in \mathbb{R}$, if both of s + t, st are rational, then at least one of s, t is rational.
 - (c) Let n be a positive integer, and ζ be a complex number. Suppose ζ is an n^2 -th root of unity. Then ζ^2 is an n-th root of unity.
- 3. Dis-prove the statements below:
 - (a) Suppose A, B, C are sets. Then $A \setminus (C \setminus B) \subset A \cap B$.
 - (b) Suppose A, B, C are non-empty sets. Then $B \setminus A \subset (C \setminus A) \setminus (C \setminus B)$.
- 4. Dis-prove the statements below:
 - (a) Let I be an open interval, and $f: I \longrightarrow \mathbb{R}$ be a function. Suppose f is differentiable on I, and f is strictly increasing on I. Then f'(x) > 0 for any $x \in I$.
 - (b) Let I be an open interval, and $f: I \longrightarrow \mathbb{R}$ be a function. Suppose f is differentiable on I, and $f'(x) \ge 0$ for any $x \in I$. Then f is strictly increasing on I.
 - (c) Let I, J be open intervals, and $f: I \cup J \longrightarrow \mathbb{R}$ be a function. Suppose f is differentiable at every point of $I \cup J$, and f'(x) = 0 for any $x \in I \cup J$. Then f is constant on $I \cup J$.
- 5. We introduce/recall the definition for the notion of *non-singularity* for square matrices with real entries:

Let A be an $(m \times m)$ -square matrix with real entries. The matrix A is said to be **non-singular** if the statement (NS) holds:

(NS) For any $\mathbf{x} \in \mathbb{R}^m$, if $A\mathbf{x} = \mathbf{0}$ then $\mathbf{x} = \mathbf{0}$.

Dis-prove the statements below.

- (a) Let A, B be non-zero (2×2) -square matrices with real entries. Suppose A, B are non-singular and A + B is not the zero matrix. Then A + B is non-singular.
- (b) Let A, B be non-zero (2×2) -square matrices with real entries. Suppose A, B are non-singular and A + B is not the zero matrix. Then A + B is singular.
- (c) Let A, B be non-zero (2×2) -square matrices with real entries. Suppose A, B are singular and A + B is not the zero matrix. Then A + B is singular.
- (d) Let A, B be non-zero (2×2) -square matrices with real entries. Suppose A, B are singular and A + B is not the zero matrix. Then A + B is non-singular.