MATH1050 Proof-writing Exercise 6

Advice.

- Study the Handouts Examples of proofs concerned with 'subset relations', Examples of proofs for properties of basic set operations before answering the questions.
- Besides the handouts mentioned above, Questions (9), (12a) of Exercise 6 may also be relevant to some of the questions below.
- When giving an argument, remember to adhere to definition, always. And don't forget to make the argument selfcontained: the assumptions needed in the argument should be stated, (likely) at the the top.
- 1. (a) i. Explain the phrase *subset of a set* by giving its appropriate definition.
 - ii. Explain the phrase *being not a subset of a set*, in terms of the notion of *belonging*, by giving an appropriate mathematical statement (whose content is self-contained).
 - (b) Let $A = \{\zeta \in \mathbb{C} : |\zeta i| < 1\}, B = \{\zeta \in \mathbb{C} : |\zeta + i| < 3\}.$
 - i. Is it true that $A \subset B$? Justify your answer.
 - ii. Is it true that $B \subset A$? Justify your answer.
- 2. (a) Explain the phrase union of two sets by stating its appropriate definition.
 - (b) Prove statement below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - Let A, B, C, D be sets. Suppose $A \subset C$ and $B \subset D$. Then $A \cup B \subset C \cup D$.
- 3. (a) Explain the phrases intersection of two sets, complement of a set in another (not distinct) set by stating their appropriate definitions.
 - (b) Prove the statements below, with reference to the definitions of set equality, subset relation, intersection, union, complement, where appropriate.
 - i. Let A, B be sets. Suppose $A \subset A \setminus B$. Then $A \cap B = \emptyset$.
 - ii. Let A, B be sets. Suppose $A \cap B = \emptyset$. Then $A \subset A \setminus B$.
- 4. We introduce/recall the definition of *column space* for matrices (with real entries):

Let A be an $(m \times n)$ -matrix with real entries.

The column space of A is defined to be the set $\{\mathbf{y} \in \mathbb{R}^m : \text{There exists some } \mathbf{x} \in \mathbb{R}^n \$ such that $\mathbf{y} = A\mathbf{x}$ }. It is denoted by $\mathcal{C}(A)$.

Prove the statements below, with reference to the definition of *column space*:

- (a) Suppose B is an $(n \times n)$ -square matrix with real entries. Then $\mathcal{C}(B^2) \subset \mathcal{C}(B)$.
- (b) Let D be an $(m \times n)$ -matrix with real entries, and E, F be $(n \times p)$ -matrices with real entries. Suppose $\mathcal{C}(E) \subset \mathcal{C}(F)$. Then $\mathcal{C}(DE) \subset \mathcal{C}(DF)$.