MATH1050 Proof-writing Exercise 3

Advice.

- Remember to adhere to definition, always.
- See the feedback to your work on Proof-writing Exercise 1, when it becomes available.
- 1. We introduce the definitions below:
 - Let $z \in \mathbb{C}$. The number z is said to be a Gaussian integer if both of $\operatorname{Re}(z)$, $\operatorname{Im}(z)$ are integers.
 - The set of all Gaussian integers is denoted by **G**.

Prove the statements below:

- (a) Suppose s is an integer. Then s is a Gaussian integer.
- (b) Suppose s is an integer. Then si is a Gaussian integer.
- (c) Let s is a Gaussian integer. Suppose $s \neq 0$. Then $|s| \ge 1$.
- (d) Suppose s, t are Gaussian integers. Then $\bar{s}, s + t$ and st are Gaussian integers.
- 2. We introduce the definition below:
 - Let $u, v \in G$. The number u is said to be G-divisible by v if there exists some $s \in G$ such that u = sv.

Prove the statements below:

- (a) 25i is **G**-divisible by 3 + 4i.
- (b) 0 is G-divisible by 0.
- (c) Let $u, v \in \mathbf{G}$. Suppose $u \neq 0$ and u is \mathbf{G} -divisible by v. Then $|v| \leq |u|$.
- (d) Let $u, v, w \in \mathbf{G}$. Suppose (u is \mathbf{G} -divisible by v and v is \mathbf{G} -divisible by w). Then u is \mathbf{G} -divisible by w.