
MATH1050 Exercise 11, Exercise 12 Supplement

1. Define the relation T = (R,R, G) in R by G = {(x, y) ∈ R2 : There exists some n ∈ Z such that y = 2nx}.

(a) Verify that T is reflexive.
(b) Verify that T is transitive.
(c) Verify that T is an equivalence relation in R.

2. Let p be a positive real number. Define the relation R = (C,C, E) in C by

E =
{
(ζ, η) ∈ C2 : There exists some n ∈ Z such that η = ζ · (cos(np) + i sin(np)).

}
(a) Verify that R is reflexive.
(b) Verify that R is transitive.
(c) Is R an equivalence relation in C? Justify your answer.

3. Write C∗ = C\{0}. Define the relation R = (C∗,C∗, G) in C∗ by

G =
{
(ζ, η) ∈ (C∗)2 : There exists some n ∈ Z such that ζ = η · 2n(cos(n) + i sin(n)).

}
.

(a) Verify that R is reflexive.
(b) Verify that R is transitive.
(c) Is R an equivalence relation in C∗? Justify your answer.

4. Define the relation T = (R,R, G) in R by
G = {(x, y) | x ∈ R and y ∈ R and (there exists some m,n ∈ Q such that y = 3m5nx)}.

(a) Verify that T is reflexive.
(b) Verify that T is transitive.
(c) Verify that T is an equivalence relation in R.

5.♣ Let A be a set, G = {(S, T ) | S ∈ P(A) and T ∈ P(A) and S ⊂ T} and R = (P(A),P(A), G).

(a) Verify that R is a partial ordering.
(b) Suppose A has at least two distinct elements. Verify that R is not a total ordering.

6.♣ Familiarity with the calculus of one variable is assumed in this question.

(a) Let A be the set of all real-valued continuous functions on [0, 1]. Define the relation S = (A,A,G) in A by

G =

{
(f, g) ∈ A2 :

∫ x

0

uf(u)du ≤
∫ x

0

ug(u)du for any x ∈ [0, 1]

}
.

Is S a partial ordering in A? Justify your answer.
(b) Let B be the set of all real-valued piecewise-continuous functions on [0, 1]. Define the relation T = (B,B,H) in

B by

H =

{
(f, g) ∈ B2 :

∫ x

0

uf(u)du ≤
∫ x

0

ug(u)du for any x ∈ [0, 1]

}
.

Is T a partial ordering in B? Justify your answer.

7.♡ Define the relation S = (N2,N2, P ) in N2 by P =

{
(u, v)

∣∣∣∣∣ There exist m,n, p, q ∈ N such that
u = (m,n), v = (p, q) and 2n+ 1

2m
≤ 2q + 1

2p

}
.

Here ≤ is the usual ordering in R.

(a) Verify that S is a partial ordering in N2.
(b) Is S a total ordering in N2? Why?

8.♢ Define the relation R = (C,C, P ) by P =

{
(ζ, η)

∣∣∣∣ ζ, η ∈ C and
(Re(ζ) < Re(η) or (Re(ζ) = Re(η) and Im(ζ) ≤ Im(η)))

}
.

(a) Let ζ, η ∈ C.
i. Verify that (ζ, η) ∈ P iff (Re(ζ) ≤ Re(η) and (Re(ζ) < Re(η) or Im(ζ) ≤ Im(η))).
ii. Verify that (ζ, η) /∈ P iff (Re(η) < Re(ζ) or (Re(η) ≤ Re(ζ) and Im(η) < Im(ζ))).

(b) Verify that R is a total ordering in C.
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Remark. Such a total ordering in C is known as a lexicographical ordering. Think of each complex number as a
word with two ‘letters’, the first ‘letter’ being its real part and the second ‘letter’ being its imaginary part respectively.
Now how do you arrange such ‘two-letter words’ in a dictionary?

9. Denote by Σ the set of all infinite sequences in R. (Recall that each infinite sequence in R is a function from N to R.)
Let k ∈ N. Define the relation Rk = (Σ,Σ, E) by

E =

{
(α, β)

∣∣∣∣ α, β ∈ Σ and there exist some N ∈ N, C ≥ 0

such that (|α(x)− β(x)| ≤ C/xk for any x ≥ N).

}
(a)♢ Verify that Rk is reflexive and symmetric.
(b)♣ Verify that Rk is an equivalence relation in Σ.

10. (a) Let A = {0, 1, 2}, G = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)}, and R = (A,A,G). (Here 0, 1, 2 are pairwise distinct
objects.)

i. Verify that R is not symmetric.
ii. Verify that R is not transitive.
iii. Verify that R is reflexive.

(b) Let B = {0, 1}, H = {(0, 0), (0, 1), (1, 0)}, and S = (B,B,H). (Here 0, 1 are distinct objects.)
i. Verify that S is not reflexive.
ii. Verify that S is not transitive.
iii. Verify that S is symmetric.

(c) Let C = {0, 1, 2}, J = {(0, 1), (1, 2), (0, 2)}, and T = (C,C, J). (Here 0, 1, 2 are pairwise distinct objects.)
i. Verify that T is not reflexive.
ii. Verify that T is not symmetric.
iii. Verify that T is transitive.

Remark. Can you construct a relation in a non-empty set which is reflexive and symmetric but not transitive? Can
you construct a relation in a non-empty set which is reflexive and transitive but not symmetric? Can you construct
a relation in a non-empty set which is symmetric and transitive but not reflexive?

11.♢ Dis-prove each of the statements below by giving an appropriate counter-example.

(a) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and symmetric. Then R is transitive.
(b) Let A be a non-empty set, and R be a relation in A. Suppose R is reflexive and transitive. Then R is symmetric.
(c) Let A be a non-empty set, and R be a relation in A. Suppose R is symmetric and transitive. Then R is reflexive.

12. (a) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is symmetric and transitive.
Prove that the statements below are logically equivalent:
(♯) For any x ∈ A, there exists some y ∈ A such that (x, y) ∈ G.
(♭) R is reflexive.

(b) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive.
Prove that the statements below are logically equivalent:
(♯) For any x, y, z ∈ A, if (x, y) ∈ G and (y, z) ∈ G then (z, x) ∈ G.
(♭) R is symmetric and transitive.

(c) Let A be a non-empty set, and R be a relation in A with graph G. Suppose R is reflexive.
Prove that the statements below are logically equivalent:
(♯) For any x, y, z ∈ A, if (x, y) ∈ G and (x, z) ∈ G then (y, z) ∈ G.
(♭) R is symmetric and transitive.

13.♢ Let A be a set, F be a subset of A2, and f = (A,A, F ). Suppose f is a function from A to A. (Also think of f as a
relation in A.) Prove the statements below:

(a) If f is reflexive as a relation in A then f = idA.
(b) If f is transitive as a relation in A then f ◦ f = f as functions.
(c) If f is transitive as a relation in A and f is injective as a function then f = idA.
(d) If f is both symmetric and transitive as a relation in A then f = idA.

14.♣ We introduce the definition below:
• Let A,B be sets, f : A −→ B be a function, and Q be a relation in B with graph H.

Define the subset f∗H of A2 by f∗H = { (x,w) | x ∈ A and w ∈ A and (f(x), f(w)) ∈ H }.
The relation (A,A, f∗H) is called pull-back relation of Q by f . It is denoted by f∗Q in A.
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Let A,B be sets, f : A −→ B be a function, and Q be a relation in B with graph H.
Prove the statements below:
(a) Suppose Q is reflexive. Then f∗Q is reflexive.
(b) Suppose Q is symmetric. Then f∗Q is symmetric.
(c) Suppose Q is transitive. Then f∗Q is transitive.
(d) Suppose Q is an equivalence relation. Then f∗Q is an equivalence relation.
(e) Suppose f∗Q is an equivalence relation and f is surjective. Then Q is an equivalence relation.
(f) Suppose Q is reflexive and f∗Q is anti-symmetric. Then f is injective.
(g) Suppose Q is a partial ordering and f is injective. Then f∗Q is a partial ordering.

15. Let A be a non-empty set, and R be a relation in A with graph E.
For any x ∈ A, we define R[x] = {y ∈ A : (x, y) ∈ E}. We define Ω = { R[x] | x ∈ A }.
Suppose that R is an equivalence relation in A.

(a) Prove the statements below:
i. For any x ∈ A, x ∈ R[x].
ii. ∅ /∈ Ω.
iii.♢ For any x, y ∈ A, if (x, y) ∈ E then R[y] ⊂ R[x].
iv.♣ For any x, y ∈ A, the statements (♯), (♮), (♭) are logically equivalent:

(♯) (x, y) ∈ E. (♮) R[x] = R[y]. (♭) R[x] ∩R[y] ̸= ∅.

Remark. R[x] is called the equivalence class of x under the equivalence relation R.
(b)♣ Apply part (a), or otherwise, to prove that Ω is a partition of A, in the sense that the statements (N), (U), (D)

are true:
(N) ∅ /∈ Ω.
(U) {z ∈ A : z ∈ S for some S ∈ Ω} = A

(D) For any S, T ∈ Ω, exactly one of the statements ‘S = T ’, ‘S ∩ T = ∅’ is true.
Remark. We call Ω the quotient of A by the equivalence relation R, and usually write Ω as A/R. We refer
to the elements of Ω as the equivalence classes under R.

(c)♡ Let Φ be the subset of A × Ω given by Φ = { (x, S) | x ∈ A and S ∈ Ω and x ∈ S }. Define the relation
φ = (A,Ω,Φ).

i. Prove that φ is a surjective function, and that φ(x) = R[x] for any x ∈ A.
Remark. We call φ the quotient mapping of the equivalence relation R.

ii. Let B be a set and f : A −→ B be a function. Suppose that for any x, y ∈ A, if (x, y) ∈ E then f(x) = f(y).
Prove that there exists some unique function g : Ω −→ B such that g ◦ φ = f .

16. Define the relation R = (C,C, E) in C by E = {(ζ, η) ∈ C2 : Re(ζ) = Re(η)}.

(a) Verify that R is reflexive.
(b) Verify that R is symmetric.
(c) Verify that R is an equivalence relation in C.
(d) For any ζ ∈ C, denote by [ζ] the equivalence class of ζ under R.

(Note that by definition, [ζ] = {η ∈ C : (ζ, η) ∈ E}.)
What are the respective equivalence classes of 1, 0, i under R? Describe these sets in geometric terms in the
Argand plane.

17. Write C∗ = C\{0}, R∗ = R\{0}.

Define the relation R = (C∗,C∗, E) in C∗ by E =

{
(ζ, η) ∈ (C∗)2 :

Re(ζ)
|ζ|2

=
Re(η)
|η|2

}
.

(a) Verify that R is an equivalence relation in C∗.
(b)♣ For any ζ ∈ C∗, denote by [ζ] the equivalence class of ζ under R.

i. Let a ∈ R∗. Verify that [ai] = {ti | t ∈ R∗}.

ii. Let ζ ∈ C∗. Suppose Re(ζ) ̸= 0. Define r
ζ
=

|ζ|2

2Re(ζ) . Verify the statements (†) and (‡):

(†) (ζ, 2r
ζ
) ∈ E.

(‡) Suppose η ∈ C∗. Then η ∈ [ζ] iff (Re(η)− r
ζ
)2 + (Im(η))2 = (r

ζ
)2.

18. Define the relation T = (C,C, G) in C by G =
{
(ζ, η) ∈ C2 : ζ4 = η4

}
.
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(a) Verify that T is an equivalence relation in C.
(b)♣ For any ζ ∈ C, denote by [ζ] the equivalence class of ζ under T .

Prove the statements below:
i. For any ζ, η ∈ C, if η ∈ [ζ] then (η = ζ or η = iζ or η = −ζ or η = −iζ).
ii. For any ζ ∈ C, [ζ] = {ζ, iζ,−ζ,−iζ}.

(c)♡ Denote by Ω the quotient of C by T , and define the function π : C −→ Ω by π(ζ) = [ζ] for any ζ ∈ C.
Let f : C −→ C be a function. Define

φ =

{
(U, χ)

∣∣∣∣ U ∈ Ω and χ ∈ C and
there exists ζ ∈ C such that U = [ζ] and χ = f(ζ4).

}
.

Note that φ ⊂ Ω× C.
Prove the statements below:

i. φ is a function from Ω to C.
ii. (φ ◦ π)(ζ) = f(ζ4) for any ζ ∈ C.
iii. Let ψ : Ω −→ C is a function. Suppose (ψ ◦ π)(ζ) = f(ζ4) for any ζ ∈ C. Then ψ = φ.

19. Let A,B be non-empty sets, and f : A −→ B be a surjective function.
Define the relation Rf = (A,A,Ef ) in A by Ef = {(x, y) | x, y ∈ A and f(x) = f(y)}.

(a) Verify that Rf is an equivalence relation.
(b)♣ For any x ∈ A, denote the equivalence class of x under Rf by [x]f .

Verify that [x]f = f−1({f(x)}) for any x ∈ A.
(c)♣ Define Ω = {S ∈ P(A) | S = [x]f for some x ∈ A}.

Verify that Ω is a partition of A, in the sense that the statements (N), (U), (D) are true:
(N) ∅ /∈ Ω.
(U) {z ∈ A : z ∈ S for some S ∈ Ω} = A.
(D) For any S, T ∈ Ω, exactly one of the statements ‘S = T ’, ‘S ∩ T = ∅’ is true.

(d)♣ Define Gf = {(x, S) | x ∈ A and S ∈ Ω and x ∈ S} and πf = (A,Ω, Gf ).
Verify that πf is a surjective function.

(e)♠ Let φ : A −→ C be a function. Suppose that for any x, y ∈ A, if f(x) = f(y) then φ(x) = φ(y). Prove that
there exists some unique function ψ : Ω −→ C such that ψ ◦ π = φ.

20.♡ Recall that whenever n ∈ N\{0, 1}, the relation Rn = (Z,Z, En) given by En = {(x, y) | x, y ∈ Z and x ≡ y(mod n)}
is an equivalence relation in Z. The quotient of Z by Rn is the set Zn.
For each x ∈ Z, we denote by [x]n the equivalence class of x under the equivalence relation Rn in Z. It is the element
of Zn given explicitly by [x]n = {x ∈ Z : (x, y) ∈ En} = {x ∈ Z : x ≡ y(mod n)}.
Below are several ‘declarations’ through each of which some function is supposed to be defined. Determine whether
it makes sense or not. Justify your answer.

(a) ‘Define the function f : Z10 −→ Z by f([k]10) = 10k for any k ∈ Z.’
(b) ‘Define the function f : Z10 −→ Z100 by f([k]10) = [k]100 for any k ∈ Z.’
(c) ‘Define the function f : Z100 −→ Z10 by f([k]100) = [k]10 for any k ∈ Z.’
(d) ‘Define the function f : Z10 −→ Z100 by f([k]10) = [10k]100 for any k ∈ Z.’
(e) ‘Define the function f : Z10 −→ Z10 by f([k]10) = [3k]10 for any k ∈ Z.’
(f) ‘Define the function f : Z10 −→ Z10 by f([3k]10) = [k]10 for any k ∈ Z.’
(g) ‘Define the function f : Z10 −→ Z10 by f([4k]10) = [3k]10 for any k ∈ Z.’

21.♠ Let G = {ζ ∈ C : Re(ζ) ∈ Z and Im(ζ) ∈ Z}. (G is the set of all Gaussian integers.)
Define the subset E of C2 by E = {(ζ, η) | ζ, η ∈ C and ζ − η ∈ G}.
Define R = (C,C, E).
For each ζ ∈ C, define [ζ] = {η ∈ C : (ζ, η) ∈ E}.
Let T = {[ζ] | ζ ∈ C}.
Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) R is an equivalence relation in C.
(S2) For any ζ ∈ C, ζ ∈ [ζ].
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(S3) For any ζ, η ∈ C, the statements (♯), (♮), (♭) are equivalent:
(♯) (ζ, η) ∈ E. (♮) [ζ] = [η]. (♭) [ζ] ∩ [η] ̸= ∅.

(a) Define the subset Σ of T 2 × T by

Σ =

{
((p, q), r)

∣∣∣∣ p, q, r ∈ T and (there exist some ζ, η ∈ C
such that p = [ζ], q = [η] and r = [ζ + η]).

}
.

Define α = (T 2, T,Σ). Note that α is a relation from T 2 to T .
Verify that α is a function from T 2 to T .

(b) Let f : C −→ C be a surjective function. Consider the statements (⋆), (⋆⋆) below:
(⋆) There exists some surjective function h : T −→ T such that for any ζ ∈ C, h([ζ]) = [f(ζ)].

(⋆⋆) For any ζ, η ∈ C, if ζ − η ∈ G then f(ζ)− f(η) ∈ G.
i. Suppose (⋆) holds. Prove that (⋆⋆) holds.
ii. Suppose (⋆⋆) holds. Prove that (⋆) holds.

22.♠ Let λ ∈ C\{0}.
Define the subset E of C2 by E = {(ζ, η) ∈ C2 : Re(λζ) = Re(λη)}.
Define R = (C,C, E).
For each ζ ∈ C, define [ζ] = {η ∈ C : (ζ, η) ∈ E}.
Let L = {[ζ] | ζ ∈ C}.
Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) R is an equivalence relation in C.
(S2) For any ζ ∈ C, ζ ∈ [ζ].
(S3) For any ζ, η ∈ C, the statements (♯), (♮), (♭) are equivalent:

(♯) (ζ, η) ∈ E. (♮) [ζ] = [η]. (♭) [ζ] ∩ [η] ̸= ∅.

(a) Define the subset Σ of L2 × L by

Σ =

{
((p, q), r)

∣∣∣∣ p, q, r ∈ L and (there exist some ζ, η ∈ C
such that p = [ζ], q = [η] and r = [ζ + η]).

}
.

Define α = (L2, L,Σ). Note that α is a relation from L2 to L.
Verify that α is a function from L2 to L.

(b) Now also suppose Re(λ) ̸= 0. Define the function f : C −→ R by

f(ζ) =
Re(λζ)
Re(λ) for any ζ ∈ C.

Prove the statement (⋆):
(⋆) There exists some bijective function h : L −→ R such that (for any ζ ∈ C, h([ζ]) = f(ζ)) and (for any

σ, τ ∈ C, h(α([σ], [τ ])) = f(σ) + f(τ)).

23.♠ Write Z∗ = Z\{0}.
Define the subset F of (Z×Z∗)2 by

F = {((x, y), (x′, y′)) | x, x′ ∈ Z and y, y′ ∈ Z∗ and xy′ = x′y }.

Define Q = (Z×Z∗,Z×Z∗, F )

For any x ∈ Z, y ∈ Z∗, define [x, y] = {(s, t) | s ∈ Z and t ∈ Z∗ and ((x, y), (s, t)) ∈ F}.
Let Φ = {[x, y] | x ∈ Z and y ∈ Z∗}.
Throughout this question, you may take the validity of the statements (S1), (S2), (S3) for granted:

(S1) Q is an equivalence relation in Z×Z∗.
(S2) For any x ∈ Z, for any y ∈ Z∗, (x, y) ∈ [(x, y)].
(S3) For any x, x′ ∈ Z, for any y, y′ ∈ Z∗, the statements (♯), (♮), (♭) are equivalent:

(♯) ((x, y), (x′, y′)) ∈ F . (♮) [x, y] = [x′, y′]. (♭) [x, y] ∩ [x′, y′] ̸= ∅.
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(a) Define the subset G of Φ2 × Φ by

G =
{
((u, v), w)

∣∣∣ There exist some x, x′ ∈ Z, y, y′ ∈ Z∗

such that u = [x, y] and v = [x′, y′] and w = [xy′ + yx′, yy′].

}
.

Define α = (Φ2,Φ, G). Note that α is a relation from G2 to G.
Verify that α is a function.

(b) For any u, v ∈ Φ, we write α(u, v) as u⊕ v.
Verify the statements below:

i. For any u, v ∈ Φ, u⊕ v = v ⊕ u.
ii. For any u, v, w ∈ Φ, (u⊕ v)⊕ w = u⊕ (v ⊕ w).
iii. There exists some unique e ∈ Φ such that for any u ∈ Φ, u⊕ e = u and e⊕ u = u.
iv. For any u ∈ Φ, there exists some unique v ∈ Φ such that u ⊕ v = e and v ⊕ u = e. (Here e is the unique

element of Φ which satisfies u⊕ e = u = e⊕ u for any u ∈ Φ.)

24. (a) Verify that 2x(2y + 1) ∈ N\{0} for any x, y ∈ N.
(b) Define the function f : N2 −→ N\{0} by f(x, y) = 2x(2y + 1) for any x, y ∈ N.

Verify that f is bijective.
(c) Verify that N2∼N.

25. Let S = {x ∈ N : x = m2 for some m ∈ N}, C = {y ∈ N : y = n3 for some n ∈ N}.

Define F =

{
(x, y)

∣∣∣∣∣ x ∈ S and y ∈ C and
there exists some k ∈ N
such that (x = k2 and y = k3).

}
, and f = (S,C, F ). Note that F ⊂ S × C.

(a) Is f a function from S to C? Justify your answer.
(b) Is it true that S∼C? Justify your answer.

26. Let p, q be distinct positive odd integers, and

A = {x ∈ Q : x = sp for some s ∈ Q}, B = {y ∈ Q : y = tq for some t ∈ Q}

Define F =

{
(x, y)

∣∣∣∣∣ x ∈ A and y ∈ B and
there exists some r ∈ Q
such that (x = rp and y = rq).

}
and f = (A,B, F ). Note that F ⊂ A×B.

(a)♢ Is f a function from A to B? Justify your answer.
(b) Is it true that A is of cardinality equal to B? Justify your answer.

27. (a) Let A1 = [1, 2], B1 = (3, 4). Apply the Schröder-Bernstein Theorem to prove that A1∼B1.
(b) Let A2 = [0,+∞), B2 = (−1, 1) ∪ [2, 3]. Apply the Schröder-Bernstein Theorem to prove that A2∼B2.
(c)♢ Let A3 = (−∞,−1) ∪ N, B3 = [0.1, 0.9] ∪ (1.1, 1.9). Apply the Schröder-Bernstein Theorem to prove that

A3∼B3.
(d)♢ Let A4 = [1, 9] ∪ (Q ∩ [10, 99]), B4 = (0.01, 0.09) ∪ (0.1, 0.9) ∪ N. Apply the Schröder-Bernstein Theorem to

prove that A4∼B4.
(e)♢ Let A5 = [1, 2] ∪ {100} and B5 = (1, 10) ∪ ((100,+∞)\Q). Apply the Schröder-Bernstein Theorem to prove

that A5∼B5.
(f)♣ Let D = {ζ ∈ C | |ζ| ≤ 1}, S = {ζ ∈ C : |Re(ζ)| ≤ 1 and |Im(ζ)| ≤ 1}. Apply the Schröder-Bernstein Theorem

to prove that D∼S.

28.♣ In this question, you may take for granted the results [0, 1]∼R, [0, 1]∼[0, 1]2, R∼R2.

(a) Let Π be the set of all planes in R3. Apply the Schröder-Bernstein Theorem to prove that Π∼R.
Remark. Let Λ be the set of all lines in R3. How to prove Λ∼R?

(b) Let S2 =
{
(x, y, z) | x, y, z ∈ R and x2 + y2 + z2 = 1

}
, IB3 =

{
(x, y, z) | x, y, z ∈ R and x2 + y2 + z2 ≤ 1

}
. Ap-

ply the Schröder-Bernstein Theorem to prove that S2∼IB
3.

(c) Let S1 = {ζ ∈ C : |ζ| = 1}, S2 =
{
(x, y, z) | x, y, z ∈ R and x2 + y2 + z2 = 1

}
. Apply the Schröder-Bernstein

Theorem to prove that S1∼S2.

29. Let A,B be non-empty sets. Suppose each of A,B is not a singleton. Pick a, a′ ∈ A, with a ̸= a′, and pick b, b′ ∈ B,
with b ̸= b′. Regard 0, 1 as distinct objects.

(a) Construct an injective function from A ∪B to (A× {0}) ∪ (B × {1}).
(b) Construct a bijective function from A× {0} to A× {b}.
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(c) Construct a bijective function from B × {1} to ({a} × (B\{b})) ∪ {(a′, b′)}.
(d) Construct a bijective function from (A× {0}) ∪ (B × {1}) to (A× {b}) ∪ ({a} × (B\{b})) ∪ {(a′, b′)}.
(e) Conclude that A ∪B.A×B.

30.♡ In this question, we are going to give a proof for the Schröder-Bernstein Theorem.

(a) Let A,B be sets, and f : A −→ B, g : B −→ A be injective functions.
For any subset V of B, define V ∗ = B\f(A\g(V )). (Note that V ∗ is a subset of B.)
Define C = {V ∈ P(B) : V ∗ ⊂ V }, K = {y ∈ B : y ∈ V for any V ∈ C}.
Prove the statements below:

i. For any subsets V,W of B, if V ⊂W then V ∗ ⊂W ∗.
ii. K ∈ C.

Remark. This is a hint: By the definition of K, we have K ⊂W for any W ∈ C.
iii. K∗ = K.
iv. f(A\g(K)) = B\K.

(b) Apply the above results to prove the Schröder-Bernstein Theorem.
Remark. How to start the argument? Focus on what part (a.iv) suggests for a pair of injective functions
whose respective domains are the respective ranges of the others. At some stage of the subsequent argument,
you may need the Glueing Lemma.

31. (a) Define the function Φ : Map(N, {0, 1}) −→ Map(N, {0, 1, 2}) by (Φ(α))(x) = α(x) for any x ∈ N.
Verify that Φ is an injective function.

(b)♣ Apply the Schröder-Bernstein Theorem, or otherwise, to prove that Map(N, {0, 1})∼Map(N, {0, 1, 2}).

32. (a) Let A,B,C,D be non-empty sets. Prove the statements below:
i.♣ Suppose A∼C and B∼D. Then Map(A,B)∼Map(C,D).
ii.♢ Suppose A ⊂ C. Then Map(A,B).Map(C,B).
iii.♢ Suppose B ⊂ D. Then Map(A,B).Map(A,D).
iv.♢ Suppose B.D. Then Map(A,B).Map(A,D).
v.♢ Suppose A ⊂ C and B ⊂ D. Then Map(A,B).Map(C,D).
vi.♡ Map(A×B,C)∼Map(A,Map(B,C)).

(b)♡ Prove each of the statements below. Where necessary, apply the Schröder-Bernstein Theorem. You may take
for granted that N2∼N, R2∼R and R∼Map(N, J0, 9K).

i. Map(N, {0, 1}).Map(N,N).
ii. Map(N,N).Map(N,Map(N, {0, 1})).
iii. Map(N,N)∼Map(N, {0, 1}).
iv. R∼Map(N,N).
v. Map(R, {0, 1})∼Map(R,N).
vi. Map(R,N)∼Map(R,R).

33.♡ We introduce/recall the definitions below:

• Let z ∈ C.
∗ z is said to be a Gaussian rational number if both of Re(z), Im(z) are rational numbers.
∗ z is said to be a Gaussian irrational number if z is not a Gaussian rational number.

The set of all Gaussian rational numbers is denoted by Q[i].
For any p, q ∈ C, we define σ[p, q] to be the set {τp+ (1− τ)q | τ ∈ [0, 1]}. (σ[p, q] is the line segment on the Argand
plane joining the point p and the point q.)
Let z1, z2 ∈ C\Q[i]. Suppose z1 ̸= z2. Prove that there exist some w ∈ C\Q[i] such that the σ[z1, w]∪σ[z2, w] ⊂ C\Q[i].
Remark. Hence any two Gaussian irrational numbers can be joint by a path made up of two line segments which
lie entirely in the set of Gaussian irrational numbers. The proof-by-contradiction method is more suitable for the
argument for this result. At some stage of the argument you may need the result N < R (or something equivalent)
and the Schröder-Bernstein Theorem.

34.♡ Familiarity with the calculus of one variable is assumed in this question.
Let J be an open interval in R. Denote by C(J) the set of all real-valued continuous functions on J . Denote by C1(J)
the set of all real-valued differentiable functions on J whose first derivatives are continuous functions on J .
Apply the Schröder-Bernstein Theorem, or otherwise, to prove that C(J)∼C1(J).

35.♡ Consider the sets N and P(N). We introduce these notations:

• We write F(N) = {S ∈ P(N) : S is finite.}. (F(N) is the set of all finite subsets of N.)
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• For any n ∈ N, we write Fn(N) = {S ∈ P(N) : S is finite and |S| = n.}. (Fn(N) is the set of all subsets of
cardinality n of N. It is by definition a subset of F(N).)

• We write C∞(N) = {S ∈ P(N) : S is countably infinite.}. (C∞(N) is the set of all countably infinite subsets of
N.)

Note that the statements below hold:
(A) F(N) ∪ C∞(N) = P(N).
(B) F(N) ∩ C∞(N) = ∅.
(C) F(N) = {S ∈ F(N) : S ∈ Fn(N) for some n ∈ N}.
(D) Fm(N) ∩ Fn(N) = ∅ whenever m ̸= n.

These combine together to give the formal formulation of the ‘fact’ that P(N) is ‘partitioned’ into these ‘infinitely
many’ ‘chambers’: the set of all (countably) infinite subsets of N, the set of all (finite) subsets of N with one element,
the set of all (finite) subsets of N with two elements, the set of all (finite) subsets of N with three elements, ... .

(a) What is F0(N)?
(b) Write down a bijective function from N to F1(N).
(c) Write down a surjective function from N2 to F2(N) ∪ F1(N).
(d) Is there an injective function from F2(N) to N2? Justify your answer.
(e) Is there an injective function from F3(N) to N3? Justify your answer.
(f) Is it true that Fn(N) is countable for any n ∈ N? Justify your answer.
(g) Is it true that F(N) is countable? Justify your answer.
(h) Is C∞(N) countable? Justify your answer.

36.♠ Let A be a non-empty finite set. We introduce these notations:

• We write S(A) =
∞
∪

n=0
Map(J1, nK, A). (S(A) is the set of all finite sequences in A. Read

∞
∪

n=0
Map(J1, nK, A) as

{φ | φ ∈ Map(J1, nK, A) for some n ∈ N}.)
• For any n ∈ N, we write Sn(A) = Map(J1, nK, A). (Sn(A) is the set of all finite sequences of length n in A.)

(a) Let n ∈ N. Is Sn(A) finite? If it is finite, what is its cardinality?
(b) Is S(A) countably infinite? Why?
(c) Is there any surjective function from S(A) to Map(S(A),S(A))? Why?
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