MATH1050 Exercise 10 (Answers and selected solution)

1. Solution.

- (a) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^4 4x^2$ for any $x \in \mathbb{R}$.
 - i. We verify that f is not injective:
 - Take $x_0 = 0$, $w_0 = 2$. We have $x_0, w_0 \in \mathbb{R}$ and $x_0 \neq w_0$. Also, $f(x_0) = 0 = f(w_0)$.
 - ii. We verify that f is not surjective:
 - Take $y_0 = -5$. Pick any $x \in \mathbb{R}$. We have $f(x) = x^4 - 4x^2 = (x^2 - 2)^2 - 4 \ge -4 > -5$. Then $f(x) \ne -5$. Hence, for any $x \in \mathbb{R}$, $f(x) \ne y_0$.
- (b) Let $x \in (\sqrt{2}, +\infty)$. $x^4 4x^2 = (x^2 2)^2 4 > 0 4 = -4$.

(c) Let
$$g: (\sqrt{2}, +\infty) \longrightarrow (-4, +\infty)$$
 be the function defined by $g(x) = x^4 - 4x^2$ for any $x \in (\sqrt{2}, +\infty)$.

- i. Pick any x, w ∈ (√2, +∞). Suppose g(x) = g(w). Then x⁴ 4x² = w⁴ 4w². Therefore (x - w)(x + w)(x² + w²) = (x² - w²)(x² + w²) = 4(x² - w²) = 4(x - w)(x + w). Then (x - w)(x + w)(x² + w² - 4) = 0. Note that x ≥ √2 > 0 and w ≥ √2 > 0. Then x + w > 0 and x² + w² - 4 > 0. Then x = w. It follows that g is injective.
 ii. Pick any y ∈ (-4, +∞). Note that y + 4 > 0. Then √y + 4 is well-defined and 2 + √4 + y > 2. Therefore
 - $\sqrt{2 + \sqrt{4 + y}} \text{ is well-defined and } \sqrt{2 + \sqrt{4 + y}} > \sqrt{2}.$ Take $x = \sqrt{2 + \sqrt{4 + y}}$. Note that $x \in (\sqrt{2}, +\infty)$. We have $g(x) = x^4 - 4x^2 = (\sqrt{2 + \sqrt{4 + y}})^4 - 4(\sqrt{2 + \sqrt{4 + y}})^2 = (2 + \sqrt{4 + y})^2 - 4(2 + \sqrt{4 + y}) + 4 - 4 = [(2 + \sqrt{4 + y}) - 2]^2 - 4 = (4 + y) - 4 = y.$ It follows that g is surjective.
- iii. Since g is both injective and surjective, g is bijective. Its inverse function $g^{-1} : (-4, +\infty) \longrightarrow (\sqrt{2}, +\infty)$ is given by $g^{-1}(y) = \sqrt{2 + \sqrt{4 + y}}$ for any $y \in (-4, +\infty)$.

Remark. Although f and g have the same 'formula of definition', one is bijective and the other is not. So when talking about a function, be aware of its domain and its range, and don't just look at its 'formula of definition'.

2. Answer.

(a)
$$J = (1, +\infty).$$

(b) $f^{-1}(y) = \frac{1}{4} \left(\ln \left(\frac{y+1}{y-1} \right) \right)^2$ for any $y \in J.$

3. Answer.

(a) —

(b) The inverse function $f^{-1} : \mathbb{C} \longrightarrow \mathbb{C}$ of the function f is given by $f^{-1}(z) = \overline{z}$ for any $z \in \mathbb{C}$. *Comment.* The conjugate of the conjugate of a complex number is the complex number itself.

4. Answer.

- (a) —
- (b) i.
 - ii. ——
 - iii. The 'formula of definition' for inverse function $f^{-1} : \mathbb{C} \setminus \{a/c\} \longrightarrow \mathbb{C} \setminus \{-d/c\}$ of the function f is given by $f^{-1}(\zeta) = \frac{d\zeta b}{-c\zeta + a}$ for any $\zeta \in \mathbb{C} \setminus \{a/c\}$.

5. Answer.

- (a) (I) Suppose $y \in f(S)$
 - (II) there exists some $x \in S$ such that y = f(x)(III) $y = f(x) = 2x^4 - 4 > 2 \cdot 1^4 - 4 = -2$

(IV) Since $x \leq 2$ (V) Take $x = \sqrt[4]{\frac{y+4}{2}}$ (VI) $x = \sqrt[4]{\frac{y+4}{2}} \ge 1$ (VII) Since $y \le 28$, we have $\frac{y+4}{2} \le 16$ (VIII) $x = \sqrt[4]{\frac{y+4}{2}} \le 2$ (IX) $f(x) = 2x^4 - 4 = 2\left(\sqrt[4]{\frac{y+4}{2}}\right)^4 - 4 = 2 \cdot \frac{y+4}{2} - 4 = y + 4 - 4 = y$ (X) $y \in f(S)$ (I) Suppose $x \in f^{-1}(U)$ (II) there exists some $y \in U$ such that y = f(x)(III) $y \in U$ (IV) $2x^4 - 4 = f(x) = y \le 4$ (V) Suppose $x \in [-\sqrt{2}, \sqrt{2}]$ (VI) Define y = f(x)(VII) $y = f(x) = 2x^4 - 4 \le 4$ (VIII) $y = f(x) = 2x^4 - 4 \ge -6$ (IX) and (X) $x \in f^{-1}(U)$

6. Answer.

(b)

- (a) (p,q) = (0,0) or (p,q) = (0,1). $(s,t) = (1,\tau)$, provided that $-2 \le \tau < 2$.
- (b) (p,q) = (1,1) and (s,t) = (2,1). Alternative answer: (p,q) = (1,2) and (s,t) = (2,2).
- (c) (m,n) = (0,0). (p,q) = (1,1) or (p,q) = (1,2).