MATH1050 Exercise 10

- 1. (a) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^4 4x^2$ for any $x \in \mathbb{R}$.
 - i. Is f injective? Justify your answer.
 - ii. Is f surjective? Justify your answer.
 - (b) Verify that for any $x \in (\sqrt{2}, +\infty), x^4 4x^2 > -4$.
 - (c) Let $g: (\sqrt{2}, +\infty) \longrightarrow (-4, +\infty)$ be the function defined by $g(x) = x^4 4x^2$ for any $x \in (\sqrt{2}, +\infty)$.
 - i. Is g injective? Justify your answer.
 - ii. Is g surjective? Justify your answer.
 - iii. Is g bijective? If yes, also write down the 'formula of definition' for its inverse function.
- 2. You are not required to prove your answers in this question.

The function $f: (0, +\infty) \longrightarrow J$, given by $f(x) = \frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{e^{\sqrt{x}} - e^{-\sqrt{x}}}$ for any $x \in (0, +\infty)$ is known to be a bijective function from $(0, +\infty)$ to the set J.

- (a) Express the set J explicitly as an interval.
- (b) Write down the explicit 'formula of definition' for the inverse function f^{-1} of the function f.
- 3. Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = \overline{z}$ for any $z \in \mathbb{C}$.
 - (a) Verify that f is bijective.
 - (b) Write down the 'formula of definition' of the inverse function of f.
- 4. Let $a, b, c, d \in \mathbb{C}$. Suppose $c \neq 0$ and $ad bc \neq 0$.
 - (a) Prove that for any $z \in \mathbb{C}$, $\frac{az+b}{cz+d} \neq \frac{a}{c}$.

(b) Define the function $f: \mathbb{C} \setminus \{-d/c\} \longrightarrow \mathbb{C} \setminus \{a/c\}$ by $f(z) = \frac{az+b}{cz+d}$ for any $z \in \mathbb{C} \setminus \{-d/c\}$.

- i. Verify that f is injective.
- ii. Verify that f is surjective.
- iii. Write down the 'formula of definition' of the inverse function of f.
- 5. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = 2x^4 4$ for any $x \in \mathbb{R}$.
 - (a) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the equality f([1,2]) = [-2,28]. (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

Write S = [1, 2]. • [We want to verify the statement (†): 'for any y, if $y \in f(S)$ then $y \in [-2, 28]$.'] Pick any y. (I) . Then by the definition of f(S), (II)For the same x, since $x \in S$, we have $1 \le x \le 2$. Since $x \ge 1$, we have _____ (III) . (IV) we have $y = f(x) = 2x^4 - 4 \le 2 \cdot 2^4 - 4 = 28$. Therefore $-2 \le y \le 28$. Hence $y \in [-2, 28]$. • [We want to verify the statement (‡): 'for any y, if $y \in [-2, 28]$ then $y \in f(S)$.'] Pick any y. Suppose $y \in [-2, 28]$. Then $-2 \le y \le 28$. [We want to verify that for this y, there exists some $x \in S$ such that y = f(x).] . (V)We verify that $x \in S$: * Since $y \ge -2$, we have $\frac{y+4}{2} \ge 1$. Then ______. ______ (VII) ______ . Then ______ (VIII) ______ Therefore $1 \le x \le 2$. Hence $x \in [1, 2] = S$. For the same x, we have (IX) Then, for the same x, y, we have $x \in S$ and y = f(x). Hence by the definition of f(S), (X) . It follows that f(S) = [-2, 28].

(b) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the equality $f^{-1}([-6,4]) = [-\sqrt{2},\sqrt{2}]$. (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

Write U = [-6, 4]. • [We want to verify the statement (†): 'for any x, if $x \in f^{-1}(U)$ then $x \in [-\sqrt{2}, \sqrt{2}]$.'] Pick any x. (I) Then by the definition of $f^{-1}(U)$, (II) For the same y, since (III) , we have $-6 \le y \le 4$. Since $y \ge -6$, we have $2x^4 - 4 = f(x) = y \ge -6$. Then $x^4 \ge -1$. (This provides no information other than re-iterating ' $x \in \mathbb{R}$ '.) Since $y \leq 4$, we have (IV) . Then $x^4 \leq 4$. Since $x \in \mathbb{R}$, we have $-\sqrt{2} \leq x \leq \sqrt{2}$. Then $x \in [-\sqrt{2}, \sqrt{2}].$ • [We want to verify the statement (‡): 'for any x, if $x \in [-\sqrt{2}, \sqrt{2}]$ then $x \in f^{-1}(U)$.'] Pick any x. (V) . Then $-\sqrt{2} \le x \le \sqrt{2}$. [We want to verify that for this x, there exists some $y \in U$ such that y = f(x).] (VI) . We verify that $y \in U$: * Since $-\sqrt{2} \le x \le \sqrt{2}$, we have $x^4 \le 4$. Then (VII) Since $x \in \mathbb{R}$, we have $x^4 \ge 0 \ge -1$. Then (VIII) . Therefore $-6 \le y \le 4$. Hence $y \in [-6, 4] = U$. Then, for the same x, y, we have y = f(x) (IX) $y \in U$. Hence by the definition of $f^{-1}(U)$, (X) . It follows that $f^{-1}(U) = [-\sqrt{2}, \sqrt{2}].$

- 6. You are not required to justify your answers in this question. In each part, you are only required to give one correct answer, although there are different correct answers.
 - (a) Let A = (-1, 1], B = [-2, 2), $G = \{(x, x) \mid x \leq 0\}$, $H = \{(x, x + 1) \mid x \geq 0\}$ and $F = (A \times B) \cap (G \cup H)$. Name some appropriate $(p, q), (s, t) \in A \times B$, if such exist, for which the ordered triple $(A, B, (F \setminus \{(p, q)\}) \cup \{(s, t)\})$ is a function from A to B.
 - (b) Let A = [0, 2], $G = \{(x, x^2) \mid 0 \le x \le 1\}$, $H = \{(x, 3 x) \mid 1 \le x < 2\}$ and $F = A^2 \cap (G \cup H)$. Name some appropriate $(p, q), (s, t) \in A^2$, if such exist, for which the ordered triple $(A, A, (F \setminus \{(p, q)\}) \cup \{(s, t)\})$ is an injective function from A to A.
 - (c) Let $A = [0, +\infty)$ and E, F be the subsets of \mathbb{R}^2 defined respectively by $E = \{(x, x^{-1}) \mid 0 < x \le 1\}, F = \{(x, 2x^{-2}) \mid x \ge 1\}.$

Name some appropriate $(m, n), (p, q) \in A^2$, if such exist, for which the ordered triple $(A, A, (E \cup F \cup \{(m, n)\}) \setminus \{(p, q)\})$ is a surjective function from A to A.