MATH1050 Exercise 7 (Answers and selected solution.)

1. Answer.

- (a) There exists some $x \in \mathbb{R}$ such that for any $s, t \in \mathbb{Q}$, there exists some $n \in \mathbb{Z}$ such that s < n < t and $|x n| \le |t s|$.
- (b) There exists some $p \in \mathbb{R}$, such that for any $q \in \mathbb{R}$, $n \in \mathbb{N}$, there exist some $s, t \in \mathbb{R}$ such that |s t| < |q| and $|s^n t^n| \ge |p|$.
- (c) There exist some $s, t \in \mathbb{Q}$ such that for any $p, q \in \mathbb{R}$, there exists some $n \in \mathbb{Z}$ such that $|s t| \le |q|$ and $(t^n > |p|)$ or $s^n > |p|$.
- (d) For any $n \in \mathbb{N}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exist some $u, v \in \mathbb{C}$ such that $|u v| < \delta$ and $|u^n v^n| \ge \varepsilon$.
- (e) There exist some $p, q \in \mathbb{Z}$ such that for any $s, t \in \mathbb{Z}$, there exist some $m, n \in \mathbb{N}$ such that $|p+q| \ge s^m$ and $|p^n-q| \ge t$ and $|p-q^n| \ge t$.
- (f) There exists some $z \in \mathbb{C}$ such that for any $r \in \mathbb{R}$, there exists some $w \in \mathbb{C}$ such that $(|z w| \le r \text{ and } (z \in \mathbb{R} \text{ or } |w| \le r))$.
- (g) There exist some $z, w \in \mathbb{C}$ such that $|z w| \ge |z + w|$ and (for any $s \in \mathbb{R}$, there exists some $t \in \mathbb{R}$ such that $(|z s t| \le |w| \text{ and } |z| \ge 1)$).
- (h) There exist some $\zeta, \alpha, \beta \in \mathbb{C}$ such that (there exist some $s, t \in \mathbb{R}$ such that $\zeta = s\alpha + t\beta$) and (for any $p, q \in \mathbb{R}$, $\zeta \neq p\bar{\alpha} + q\bar{\beta}$.)

2. Solution.

- (a) Take n = 3. Note that $3 \in \mathbb{N}$. Note that 3 + 2 = 5, 3 + 4 = 7. The integers 3, 5, 7 are prime numbers.
- (b) Take $x = \sqrt{2}$. Note that $x \in \mathbb{R}$. We have $x^2 2 = (\sqrt{2})^2 2 = 2 2 = 0$.
- (c) Take $z_0 = \frac{1+i}{\sqrt{2}}$. Note that $z_0 \in \mathbb{C}$.

Also note that $z_0^4 = \left(\frac{1+i}{\sqrt{2}}\right)^4 = \frac{1+4i+6i^2+4i^3+i^4}{4} = \frac{1+4i-6-4i+1}{4} = 1.$

3. Solution.

- (a) i. $-2 \in \mathbb{Z}$. -2 + 1 = -1 < 0.
 - ii. $2 \in \mathbb{Z}$. 2 1 = 1 > 0.
- (b) Suppose it were true that there existed some $x \in \mathbb{Z}$ such that (x+1 < 0 and x-1 > 0). For this x, we would have x < -1 and x > 1. Then x < -1 < 1 < x. Therefore $x \neq x$. Contradiction arises.

Hence it is false that there exists some $x \in \mathbb{Z}$ such that (x+1 < 0 and x-1 > 0).

Alterntative argument: The negation of the statement 'there exists some $x \in \mathbb{Z}$ such that (x+1 < 0 and x-1 > 0)' is given by:

• For any $x \in \mathbb{Z}$, $(x+1 \ge 0 \text{ or } x-1 \le 0)$.

We give a proof of the latter:

• Let $x \in \mathbb{Z}$. We have $x \ge 0$ or $x \le 0$. Where $x \ge 0$, we have $x + 1 \ge 1 \ge 0$. Where $x \le 0$, we have $x - 1 \le -1 \le 0$.

4. Solution.

- (a) Let $z \in \mathbb{C}\setminus\{0\}$. Suppose it were true that Re(z)=0 and Im(z)=0. Then $z=\text{Re}(z)+i\text{Im}(z)=0+i\cdot 0=0$. Contradiction arises. Hence $\text{Re}(z)\neq 0$ or $\text{Im}(z)\neq 0$ in the first place.
- (b) The statement 'for any $z \in \mathbb{C} \setminus \{0\}$, $\text{Re}(z) \neq 0$ ' is false: we have $i \in \mathbb{C} \setminus \{0\}$ and Re(i) = 0. The statement 'for any $w \in \mathbb{C} \setminus \{0\}$, $\text{Im}(w) \neq 0$ ' is also false: we have $1 \in \mathbb{C}$ and Im(1) = 0.

Hence the statement '(for any $z \in \mathbb{C} \setminus \{0\}$, $\text{Re}(z) \neq 0$) or (for any $w \in \mathbb{C} \setminus \{0\}$, $\text{Im}(w) \neq 0$)' is false.

5. (a) **Answer.**

- (I) Suppose
- (II) $\eta = a'\zeta + b'\zeta^2$
- (III) $\zeta \neq 0$
- (IV) a' a
- (V) Suppose it were true that $b \neq b'$
- (VI) $\frac{a'-a}{b-b'}$

(VII) a' = a

(b) i. —

Remark. The correct way to start the argument is:

Let r be a real number. Let a, a', b, b' be rational numbers. Suppose $r = a + b\sqrt{2}$ and $r = a' + b'\sqrt{2}$.

ii. ——

Remark. The correct way to start the argument is:

Let p, q be real numbers. Suppose f(x) be the cubic polynomial given by $f(x) = x^3 + px + q$. Let v be a real number. Let α, β be real numbers. Suppose $u = \alpha'$, $u = \beta'$ are real solutions of the

equation f(u) = v with unknown u.

6. (a) **Answer.**

There are many correct answers for (II), (III), ..., (IX) collectively.

- (I) There exist some $x, y, z \in \mathbb{Z}$ such that each of xy, xz is divisible by 4 and xyz is not divisible by 8.
- (II) y = z = 1
- (III) 4
- (IV) 4
- (V) $4 = 1 \cdot 4$ and $1 \in \mathbb{Z}$
- (VI) 4
- (VII) 4 were divisible by 8
- (VIII) 4 = 8k
- (IX) $\frac{1}{2}$
- (b) i. —

ii. —

Remark. Be aware that the negation of the statement to be dis-proved is:

• There exist some $x, y, z \in \mathbb{N}$ such that x - y > 0 and y - z > 0 and x - y, y - z are divisible by 5 and x + y + z is divisible by 5.

iii. ____

Remark. Be aware that the negation of the statement to be dis-proved is:

• There exist some $x, y \in \mathbb{N}$ such that $\sqrt{x^2 + y^2} \notin \mathbb{N}$.

iv. ----

Remark. Be aware that the negation of the statement to be dis-proved is:

• There exist some $s, t \in \mathbb{R}$ such that both of s + t, st are rational and both of s, t are irrational.

Remark. Be aware that the negation of the statement to be dis-proved is:

• There exist some $a, b, c \in \mathbb{N}$ such that ab is divisible by c and c < a and c < b and both of a, b are divisible by c.

7. (a) **Answer.**

- (I) Suppose
- (II) $u \in \mathbb{R} \setminus \{-1, 0, 1\}$
- (III) $u^6 + v^6 < 2v^4$
- (IV) $u^6 2u^4 + u^2 + v^6 2v^4 + v^2 \le 0$
- (V) $u^2(u^2-1)^2=0$
- (VI) $u \in \mathbb{R} \setminus \{-1, 0, 1\}$
- (b) i. Solution.

We verify that for any $x \in \mathbb{R}$, $x^2 + 2x + 3 \ge 0$:

• Let $x \in \mathbb{R}$. We have $x^2 + 2x + 3 = (x+1)^2 + 2 \ge 0 + 2 = 2 \ge 0$.

Alternative argument:

Suppose it were true that there existed some $x \in \mathbb{R}$ such that $x^2 + 2x + 3 < 0$. Then we would have $0 \le 2 = 0 + 2 \le (x+1)^2 + 2 = x^2 + 2x + 3 < 0$. Contradiction arises.

Hence, in the first place, it is false that there exists some $x \in \mathbb{R}$ such that $x^2 + 2x + 3 < 0$.

ii. Solution.

We verify that for any $x, y \in \mathbb{R} \setminus \{0\}$, $(x+y)^2 \neq x^2 + y^2$:

• Pick any $x, y \in \mathbb{R} \setminus \{0\}$. We have $xy \neq 0$. Then $(x+y)^2 - x^2 - y^2 = 2xy \neq 0$. Then $(x+y)^2 \neq x^2 + y^2$.

Hence it is false that there exist some $x, y \in \mathbb{R} \setminus \{0\}$ such that $(x+y)^2 = x^2 + y^2$.

Alternative argument:

Suppose it were true that there existed some $x, y \in \mathbb{R} \setminus \{0\}$ such that $(x+y)^2 = x^2 + y^2$. Then we would have $2xy = (x+y)^2 - x^2 - y^2 = 0$. Since $x \neq 0$ and $y \neq 0$ and $y \neq 0$, we have $2xy \neq 0$. Contradiction arises. Hence, in the first place, it is false that there exist some $x, y \in \mathbb{R} \setminus \{0\}$ such that $(x+y)^2 = x^2 + y^2$.

iii. — iv. — v. ——

8. Solution.

- (a) Let $s \in \mathbb{Z}$.
 - Suppose s is not divisible by 2.

By Division Algorithm for Integers, there exist some $k, r \in \mathbb{Z}$ such that s = 2k + r and $0 \le r < 2$. Since s is not divisible by 2, we have $r \ne 0$. Then 0 < r < 2. Therefore r = 1.

Hence s = 2k + 1 for the same $k \in \mathbb{Z}$.

• Suppose there exists some $k \in \mathbb{Z}$ such that s = 2k + 1.

We claim that s is not divisible by 2:

* Suppose it were true that s was divisible by 2. Then there exists some $\ell \in \mathbb{Z}$ such that $s = 2\ell$. Now we would have $2\ell = s = 2k + 1$. Then $2(\ell - k) = 1$. Since $k, \ell \in \mathbb{Z}$, we have $\ell - k \in \mathbb{Z}$. Therefore 1 would be divisible by 2. But 0 < 1 < 2.

Contradiction arises.

Hence s is not divisible by 2 in the first place.

- (b) Let $a, b \in \mathbb{Z}$.
 - Suppose ab is an odd integer.

We claim that both of a, b are odd integers:

* Suppose it were true that at least one of a, b, say, a was an even integer. Then there would exist some $k \in \mathbb{Z}$ such that a = 2k.

Now we would have ab = 2kb. Since $k, b \in \mathbb{Z}$, we have $kb \in \mathbb{Z}$. Therefore ab would be divisible by 2. Hence ab would not be an odd integer. Contradiction arises.

Hence both of a, b are odd integers in the first place.

• Suppose both of a, b are odd integers.

Then there exist $m, n \in \mathbb{Z}$ such that a = 2m + 1 and b = 2n + 1.

Now we have ab = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1.

Since $m, n \in \mathbb{Z}$, we have $2mn + m + n \in \mathbb{Z}$. Then ab is an odd integer.

9. —— 10. ——

11. Solution.

(a) We have

$$35 = 2 \cdot 14 + 7$$

 $14 = 2 \cdot 7 + 0$

 $\gcd(35, 14) = 7.$

(b) We have

$$\begin{array}{rcl} 15 & = & 1 \cdot 11 + 4 \\ 11 & = & 2 \cdot 4 + 3 \\ 4 & = & 1 \cdot 3 + 1 \\ 3 & = & 3 \cdot 1 + 0 \end{array}$$

gcd(15, 11) = 1.

(c) We have

$$\begin{array}{rcl}
252 & = & 1 \cdot 180 + 72 \\
180 & = & 2 \cdot 72 + 36 \\
72 & = & 2 \cdot 36 + 0
\end{array}$$

 $\gcd(252, 180) = 36.$

(d) We have

$$\begin{array}{rcl}
1368 & = & 1 \cdot 1278 + 90 \\
1278 & = & 14 \cdot 90 + 18 \\
90 & = & 5 \cdot 18
\end{array}$$

Hence gcd(1368, 1278) = 18.

12. Solution.

(a) i. Let $n \in \mathbb{N} \setminus \{0, 1\}$. Applying the Euclidean Algorithm to the pair of positive integers n, n + 1, we obtain

$$n+1 = 1 \cdot n + 1$$

$$n = n \cdot 1 + 0$$

It follows that gcd(n, n + 1) = 1.

ii. Let $n \in \mathbb{N} \setminus \{0,1\}$. Applying Euclidean Algorithm to the pair of positive integers 2n-1, 2n+1, we obtain

$$2n+1 = 1 \cdot (2n-1) + 2$$

 $2n-1 = (n-1) \cdot 2 + 1$
 $2 = 2 \cdot 1 + 0$

It follows that gcd(2n-1, 2n+1) = 1.

- (b) The following statement holds:
 - Let $n \in \mathbb{N} \setminus \{0, 1\}$. If n is an odd integer then $\gcd(3n 1, 3n + 1) = 2$. If n is an even integer then $\gcd(3n 1, 3n + 1) = 1$.

Justification:

- Let $n \in \mathbb{N} \setminus \{0, 1\}$.
 - * Suppose n is an odd integer. Then there exists some $k \in \mathbb{Z}$ such that n = 2k + 1. Therefore 3n 1 = 6k + 2, and 3n + 1 = 6k + 4.

Since $n \geq 2$, we have $k \geq 1$.

Applying Euclidean Algorithm to the pair of positive integers 6k + 2, 6k + 4, we obtain

$$6k + 4 = 1 \cdot (6k + 2) + 2$$

 $6k + 2 = (3k + 1) \cdot 2 + 0$

Then gcd(3n-1,3n+1) = gcd(6k+2,6k+4) = 2.

* Suppose n is an even integer. Then there exists some $k \in \mathbb{Z}$ such that $n = 2\ell$. Therefore $3n - 1 = 6\ell - 1$, and $3n + 1 = 6\ell + 1$.

Since $n \geq 2$, we have $\ell \geq 1$.

Applying Euclidean Algorithm to the pair of positive integers 6k + 2, 6k + 4, we obtain

$$6\ell + 1 = 1 \cdot (6\ell - 1) + 2$$

$$6\ell - 1 = (3\ell - 1) \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

Then $gcd(3n-1,3n+1) = gcd(6\ell-1,6\ell+1) = 1$.

 $13. \quad \text{(a)} \ \textit{Hint.} \ \text{Re-write the equality} \left(\begin{array}{c} p \\ r \end{array} \right) = \frac{p!}{(r!) \cdot [(p-r)!]} \ \text{as} \ (r!) \cdot [(p-r)!] \cdot \left(\begin{array}{c} p \\ r \end{array} \right) = p \cdot [(p-1)!].$

What does Euclid's Lemma tells you in light of p being a prime number?

- (b) *Hint*. Apply the Binomial Theorem.
- (c) Hint. Apply mathematical induction to the proposition S(n) stated below: $n^p \equiv n \pmod{p}$.
- (d) *Hint*. Apply the result in part (c).
- 14. (a) Solution.

Regard 0, 1, 2 as distinct objects.

Let
$$A = \{0, 1\}, B = \{1\}, C = \{2\}.$$

We have
$$A \cap B = B = \{1\}, C \setminus B = C = \{2\}, A \setminus (C \setminus B) = A = \{0, 1\}.$$

Note that $0 \in A \setminus (C \setminus B)$ and $0 \notin A \cap B$.

Hence $A \setminus (C \setminus B) \not\subset A \cap B$.

Remark. Be aware that to dis-prove the statement stated in the question is to prove its negation, which reads:

- There exist some sets A, B, C such that $A \setminus (C \setminus B) \not\subset A \cap B$.
- (b) Solution.

Regard 0, 1, 2 as distinct objects.

Let
$$A = \{0\}, B = \{1\}, C = \{2\}.$$

A, B, C are non-empty sets.

We have
$$B \setminus A = B = \{1\}$$
, $C \setminus A = C = \{2\}$, $C \setminus B = C = \{2\}$, and $(C \setminus A) \setminus (C \setminus B) = \emptyset$.

Note that $1 \in B \setminus A$ and $1 \notin (C \setminus A) \setminus (C \setminus B)$.

Hence $B \setminus A \not\subset (C \setminus A) \setminus (C \setminus B)$.

Remark. Be aware that to dis-prove the statement stated in the question is to prove its negation, which reads:

• There exist some non-empty sets A, B, C such that $B \setminus A \not\subset (C \setminus A) \setminus (C \setminus B)$.

(c) Solution.

Regard 0, 1, 2 as distinct objects.

Let
$$A = \{0\}, B = \{1\}, C = \{2\}.$$

We have $B \cap C = \emptyset$. Then $A \cup (B \cap C) = \{0\}$.

We also have $A \cup B = \{0, 1\}$. Then $(A \cup B) \cap C = \emptyset$.

Note that $0 \in A \cup (B \cap C)$ and $0 \neq (A \cup B) \cap C$

Here $A \cup (B \cap C) \not\subset (A \cup B) \cap C$.

Remark. Be aware that to dis-prove the statement stated in the question is to prove its negation, which reads:

• There exist some non-empty sets A, B, C such that $A \cup (B \cap C) \not\subset (A \cup B) \cap C$.

- (d) —
- (e) —
- (f) —
- (g) —

15. Solution.

- (a) Let A, B be sets.
 - Suppose $A \subsetneq B$. Then $A \subset B$ and $A \neq B$.

In particular $A \subset B$.

Since $A \neq B$, we have $(A \not\subset B \text{ or } B \not\subset A)$.

Since $A \subset B$, we have $B \not\subset A$.

• Suppose $A \subset B$ and $B \not\subset A$.

Since $B \not\subset A$, it is not true that $B \subset A$. Therefore $A \neq B$.

It follows that $A \subsetneq B$.

(b) Let A, B, C be sets. Suppose $A \subseteq B$ and $B \subseteq C$. Further suppose $A \subsetneq B$ or $B \subsetneq C$.

Since $A \subset B$ and $B \subset C$, we have $A \subset C$.

We verify that $C \not\subset A$:

• Suppose it were true that $C \subset A$. Then, since $A \subset C$, we would have A = C. Moreover, since $A \subset B$ and $B \subset C = A$, we would have A = B.

Therefore B = C also.

Now A = B and B = C. Then $(A \subsetneq B \text{ or } B \subsetneq C)$ would be false.

Contradiction arises. Hence $C \not\subset A$ in the first place.

Now we have $A \subset C$ and $C \not\subset A$. It follows that $A \subsetneq C$.

16. —

17. Solution.

Let M be a set, and C be a subset of $\mathfrak{P}(M)$.

Define $I = \{x \in M : x \in V \text{ for any } V \in C\}, J = \{x \in M : x \in V \text{ for some } V \in C\}.$

(a) Let P be a subset of M. Suppose $P \subset V$ for any $V \in C$.

Pick any $x \in P$.

• Pick any $V \in C$. Now we have $x \in P$ and $P \subset V$. Then by assumption, we have $x \in V$.

Therefore $x \in I$ by the definition of I.

It follows that $P \subset I$.

(b) Let Q be a subset of M. Suppose $V \subset Q$ for any $V \in C$.

Pick any $x \in J$. By the definition of J, there exists some $V_x \in C$ such that $x \in V_x$. By assumption, $V_x \subset Q$.

Now we have $x \in V_x$ and $V_x \subset Q$. Therefore $x \in Q$.

It follows that $J \subset Q$.

- (c) Let R be a subset of M. Suppose $D = \{V \cap R \mid V \in C\}$, and $K = \{x \in M : x \in U \text{ for some } U \in D\}$.
 - Pick any $x \in K$. By the definition of K, there exists some $U_x \in D$ such that $x \in U_x$.

By the definition of D, there exists some $V_x \in C$ such that $U_x = V_x \cap R$.

Then $x \in V_x \cap R$. Therefore $x \in V_x$ and $x \in R$.

Since $x \in V_x$ and $V_x \in C$, we have $x \in J$ by the definition of J.

Now $x \in J$ and $x \in R$. Then $x \in J \cap R$.

• Pick any $x \in J \cap R$. We have $x \in J$ and $x \in R$. In particular, $x \in J$. Then there exists some $V_x \in C$ such that $x \in V_x$. Now $x \in V_x$ and $x \in R$. Then $x \in V_x \cap R$. Define $U_x = V_x \cap R$. By the definition of U_x , we have $U_x \in D$, and $x \in U_x$. Then by the definition of K, we have $x \in K$.

It follows that $K = J \cap R$.