
MATH1050 Exercise 2

1. Let a, b, c be numbers, with a ̸= 0. Let α be a number. Let f(x) be the quadratic polynomial given by ax2 + bx+ c.

(a) Suppose α is a root of f(x). Let β = − b

a
− α. Prove the statements below:

i. f(x) = a(x− α)(x− β) as polynomials.
ii. β is a root of f(x).

iii. αβ =
c

a
.

Remark. Up to this point, we have not addressed the question whether f(x) has any root (and where it is) in
the first place.

(b) Define ∆f = b2 − 4ac.

i. Verify that f(x) = a

[(
x+

b

2a

)2

− ∆f

4a2

]
as polynomials.

ii. Suppose a, b, c are real numbers.

A. Suppose ∆f ≥ 0. Define α± =
−b±

√
∆f

2a
respectively.

Verify that f(x) = a(x− α+)(x− α−) as polynomials.

B. Now suppose ∆f < 0 instead. Define ζ =
−b+ i

√
−∆f

2a
.

Verify that that f(x) = a(x− ζ)(x− ζ̄) as polynomials.
Remark. We have now confirmed that the quadratic polynomial with real coefficients f(x) has a pair of
roots and how it factorizes into linear factors.

(c) Now we no longer suppose ‘a, b, c are real numbers’.

i. Suppose ∆f ̸= 0, and σ is a square root of ∆f

4a2
in the complex numbers. Define α± = − b

2a
± σ respectively.

Verify that f(x) = a(x− α+)(x− α−) as polynomials.

ii. Now suppose ∆f = 0 instead. Verify that f(x) = a

(
x+

b

2a

)2

.

Remark. We have now confirmed that quadratic polynomial with complex coefficients f(x) has a pair of roots
and how it factorizes into linear factors.

2. Let a, b, c, r be numbers, with a ̸= 0 and c ̸= 0 and r ̸= 0. Let f(x) be the quadratic polynomial given by f(x) =

ax2 + bx+ c. Suppose α, β are the roots of f(x). Further suppose α = rβ.

Prove that rb2 = (Pr +Q)2ac. Here P,Q are some integers whose values you have to determined explicitly.

3. Solve for all real solutions of each of the inequalities/systems below. 1 ‘Check solution’ when indeed you have to do so.

(a) x2 − 3x < 10.

(b)
{

(x+ 1)(x− 6) ≥ 8

3x− 1 ≥ 5

(c) (x+ 1)2 > 16 or 2x+ 5 > 7.

(d) (x− 1)(x− 2)(x− 3) ≥ 0.
1In various situations, you may need apply some special rules about the words ‘and’, ‘or’, known as the Distributive Laws for ‘and’, ‘or’, (with

or without your being aware of them). They may be in-formally stated as below:
A. The pair of statements below are the same in the sense that one holds exactly when the other holds:

• (blah-blah-blah or bleh-bleh-bleh) and bloh-bloh-bloh.
• (blah-blah-blah and bloh-bloh-bloh) or (bleh-bleh-bleh and bloh-bloh-bloh).

B. The pair of statements below are the same in the sense that one holds exactly when the other holds:

• (blah-blah-blah and bleh-bleh-bleh) or bloh-bloh-bloh.
• (blah-blah-blah or bloh-bloh-bloh) and (bleh-bleh-bleh or bloh-bloh-bloh).

More will be said of them in the discussion on logic.
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(e) 2

3− x
≤ 1.

(f) 2x− 3

x
≥ 1.

(g) x2 − 1

x2 − 4
≤ −2.

(h) |x2 − 5x| < 6.

(i)
∣∣∣∣3x+ 11

x+ 2

∣∣∣∣ < 2.

(j)♢
∣∣ |x| − 4

∣∣ > 3.

(k) |x2 − 3| ≤ 2|x|.

(l)♢ |2x+ 1| < 3x− 2.

Remark. Now suppose you are not required to give any step of algebraic manipulation. Can you modify the ‘graphical
method’ for solving equations in school mathematics to determine the answer for each part as quickly as possible?

4. Let p be a real number. Let f(x) be the quadratic polynomial given by f(x) = x2 + (p+1)x+ (p− 1). Suppose α, β are
the roots of f(x).

(a) Prove that α, β are real and distinct.
(b) Express (α− 2)(β − 2) in terms of p.
(c) Suppose β < 2 < α.

i. Prove that p < −5

3
.

ii. Further suppose (α− β)2 < 20. Prove that −3 < p < −5

3
.

5. (a) Let n ∈ N. Prove that
√
n+ 2−

√
n+ 1 <

1

2
√
n+ 1

<
√
n+ 1−

√
n.

Remark. There is no need for mathematical induction.

(b) Hence prove that 193 <

10000∑
k=10

1√
k
< 194.

6. (a) Consider the statement (A):
(A) Let x, y ∈ R. Suppose x+ y > 1 and x > y. Then x2 − y2 > x− y.
Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (A). (The ‘underline’ for each blank bears no definite relation with the length of
the answer for that blank.)

Let x, y ∈ R. (I) .
(II) x+ y > 1, we have x+ y − 1 > 0.

Since (III) , we have x− y > 0.
Then (x2 − y2)− (x− y) = (IV) > 0.
Therefore (V) .

(b) Consider the statement (B):
(B) Let x, y ∈ R. Suppose x > 0 and y > 0. Then x3 + y3 ≥ xy(x+ y).
Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that
it gives a proof for the statement (B). (The ‘underline’ for each blank bears no definite relation with the length of
the answer for that blank.)

(I) .
Then x+ y > 0. Also, (x− y)2 ≥ 0.
We have (x3 + y3)− xy(x+ y) = (II) .
Therefore x3 + y3 ≥ xy(x+ y).
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7. Consider the statement (C):

(C) Let x, y, z ∈ R. Suppose y > x > 0 and z > −y. Then x+ z

y + z
>

x

y
iff z > 0.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it
gives a proof for the statement (C). (The ‘underline’ for each blank bears no definite relation with the length of the
answer for that blank.)

Let x, y, z ∈ R. (I) .
Since (II) , we have y + z > 0. Then, since y > 0 also, we have y(y + z) (III) .

• (IV) z > 0.

Then we have (V) . Therefore (x+ z)y = xy+ zy > xy+ zx = x(y+ z).

Hence (VI) .

Therefore x+ z

y + z
>

x

y
.

• (VII) .

Then xy + zy = (x+ z)y = (VIII) = x(y + z) = xy + zx.

(IX) .

Hence z > 0.

It follows that (X) .

8.♢ Prove the statement below:

• Let m,n ∈ N\{0}. Let x be a positive real number. Suppose m > n. Then xm+
1

xm
≥ xn+

1

xn
. Moreover, equality

holds iff x = 1.

9. (a) Prove the statement (♯) below:

(♯) Suppose u, v, x, y ∈ R. Then (ux+ vy)2 ≤ (u2 + v2)(x2 + y2).
Remark. This is a ‘baby version’ of the Cauchy-Schwarz Inequality.

(b) Hence, or otherwise, prove the statement (♭) below:

(♭) Suppose s, t are positive real numbers. Then (s+ t)

(
1

s
+

1

t

)
≥ 4.

10. (a)♢ By considering the non-negativity of squares, or otherwise, prove the statement (♯) below:

(♯) Suppose a, b, c, d are positive real numbers. Then a+ b+ c+ d

4
≥ 4

√
abcd.

(b)♣ Hence, or otherwise, prove the statement (♭) below:

(♭) Suppose r, s, t are positive real numbers. Then r + s+ t

3
≥ 3

√
rst.

Remark. These are ‘baby versions’ of the Arithmetico-Geometrical Inequality.

11.♢ Let c, ε be positive real numbers. Define δ =
√
c2 + ε− c.

(a) Prove that δ > 0.
(b) Let x be a real number. Suppose |x− c| < δ.

i. Prove that |x+ c| ≤
√
c2 + ε+ c.

ii. Hence, or otherwise, deduce that |x2 − c2| < ε.

Remark. This is what we have verified overall: For any c > 0, for any ε > 0, there exists some δ > 0, (namely,
δ =

√
c2 + ε− c) such that for any x ∈ R, if |x− c| < δ then |x2 − c2| < ε. Hence we have argued for the continuity of

the function t2 at every positive value of t.
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12. Let n ∈ N\{0}.

(a)♢ Let a ∈ R. Suppose a > 1. Prove that (n+ 1)(a− 1) < an+1 − 1 < (n+ 1)an(a− 1).

(b)♣ Hence prove the statement below:

• Let b ∈ R. Suppose b > 1. Then bn+1 − (b− 1)n+1 < (n+ 1)bn < (b+ 1)n+1 − bn+1.

(c)♢ Hence prove the statement below:

• Suppose m ∈ N\{0, 1}. Then mn+1

n+ 1
<

m∑
k=1

kn <
(m+ 1)n+1 − 1

n+ 1
.
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