- 1. Let a, b, c be numbers, with $a \neq 0$. Let α be a number. Let f(x) be the quadratic polynomial given by $ax^2 + bx + c$.
 - (a) Suppose α is a root of f(x). Let $\beta = -\frac{b}{a} \alpha$. Prove the statements below:
 - i. $f(x) = a(x \alpha)(x \beta)$ as polynomials.
 - ii. β is a root of f(x).

iii.
$$\alpha\beta = \frac{c}{a}$$
.

Remark. Up to this point, we have not addressed the question whether f(x) has any root (and where it is) in the first place.

(b) Define $\Delta_f = b^2 - 4ac$.

i. Verify that $f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta_f}{4a^2} \right]$ as polynomials.

- ii. Suppose a, b, c are real numbers.
 - A. Suppose $\Delta_f \ge 0$. Define $\alpha_{\pm} = \frac{-b \pm \sqrt{\Delta_f}}{2a}$ respectively. Verify that $f(x) = a(x - \alpha_+)(x - \alpha_-)$ as polynomials.
 - B. Now suppose $\Delta_f < 0$ instead. Define $\zeta = \frac{-b + i\sqrt{-\Delta_f}}{2a}$.

Verify that that
$$f(x) = a(x - \zeta)(x - \zeta)$$
 as polynomials.

Remark. We have now confirmed that the quadratic polynomial with real coefficients f(x) has a pair of roots and how it factorizes into linear factors.

- (c) Now we no longer suppose 'a, b, c are real numbers'.
 - i. Suppose $\Delta_f \neq 0$, and σ is a square root of $\frac{\Delta_f}{4a^2}$ in the complex numbers. Define $\alpha_{\pm} = -\frac{b}{2a} \pm \sigma$ respectively. Verify that $f(x) = a(x \alpha_{\pm})(x \alpha_{\pm})$ as polynomials.
 - ii. Now suppose $\Delta_f = 0$ instead. Verify that $f(x) = a \left(x + \frac{b}{2a}\right)^2$.

Remark. We have now confirmed that quadratic polynomial with complex coefficients f(x) has a pair of roots and how it factorizes into linear factors.

2. Let a, b, c, r be numbers, with $a \neq 0$ and $c \neq 0$ and $r \neq 0$. Let f(x) be the quadratic polynomial given by $f(x) = ax^2 + bx + c$. Suppose α, β are the roots of f(x). Further suppose $\alpha = r\beta$.

Prove that $rb^2 = (Pr + Q)^2 ac$. Here P, Q are some integers whose values you have to determined explicitly.

- 3. Solve for all real solutions of each of the inequalities/systems below.¹ 'Check solution' when indeed you have to do so.
 - (a) $x^2 3x < 10$.
 - (b) $\begin{cases} (x+1)(x-6) \ge 8\\ 3x-1 \ge 5 \end{cases}$
 - (c) $(x+1)^2 > 16$ or 2x+5 > 7.
 - (d) $(x-1)(x-2)(x-3) \ge 0$.

- (blah-blah or bleh-bleh-bleh) and bloh-bloh-bloh.
- (blah-blah and bloh-bloh) or (bleh-bleh and bloh-bloh).
- B. The pair of statements below are the same in the sense that one holds exactly when the other holds:
 - (blah-blah-blah and bleh-bleh-bleh) or bloh-bloh.
 - (blah-blah or bloh-bloh) and (bleh-bleh or bloh-bloh).

More will be said of them in the discussion on logic.

¹In various situations, you may need apply some special rules about the words 'and', 'or', known as the *Distributive Laws for 'and', 'or',* (with or without your being aware of them). They may be in-formally stated as below:

A. The pair of statements below are the same in the sense that one holds exactly when the other holds:

 $\begin{array}{ll} \text{(e)} & \frac{2}{3-x} \leq 1. \\ \text{(f)} & 2x - \frac{3}{x} \geq 1. \\ \text{(g)} & \frac{x^2 - 1}{x^2 - 4} \leq -2. \\ \text{(h)} & |x^2 - 5x| < 6. \\ \text{(i)} & \left| \frac{3x + 11}{x+2} \right| < 2. \\ \text{(j)}^\diamond & | & |x| - 4 & | > 3. \\ \text{(k)} & |x^2 - 3| \leq 2|x|. \\ \text{(l)}^\diamond & |2x + 1| < 3x - 2. \end{array}$

Remark. Now suppose you are not required to give any step of algebraic manipulation. Can you modify the 'graphical method' for solving equations in *school mathematics* to determine the answer for each part as quickly as possible?

- 4. Let p be a real number. Let f(x) be the quadratic polynomial given by $f(x) = x^2 + (p+1)x + (p-1)$. Suppose α, β are the roots of f(x).
 - (a) Prove that α, β are real and distinct.
 - (b) Express $(\alpha 2)(\beta 2)$ in terms of p.
 - (c) Suppose $\beta < 2 < \alpha$.
 - i. Prove that $p < -\frac{5}{3}$.

ii. Further suppose $(\alpha - \beta)^2 < 20$. Prove that -3 .

5. (a) Let $n \in \mathbb{N}$. Prove that $\sqrt{n+2} - \sqrt{n+1} < \frac{1}{2\sqrt{n+1}} < \sqrt{n+1} - \sqrt{n}$.

Remark. There is no need for mathematical induction.

b) Hence prove that
$$193 < \sum_{k=10}^{10000} \frac{1}{\sqrt{k}} < 194.$$

6. (a) Consider the statement (A):

(

(A) Let $x, y \in \mathbb{R}$. Suppose x + y > 1 and x > y. Then $x^2 - y^2 > x - y$.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (A). (The 'underline' for each blank bears no definite relation with the length of the answer for that blank.)

Let $x, y \in \mathbb{R}$. (I) (II) x + y > 1, we have x + y - 1 > 0. Since (III) , we have x - y > 0. Then $(x^2 - y^2) - (x - y) =$ (IV) > 0. Therefore (V) .

(b) Consider the statement (B):

(B) Let $x, y \in \mathbb{R}$. Suppose x > 0 and y > 0. Then $x^3 + y^3 \ge xy(x + y)$.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (B). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

 $\frac{(\mathrm{I})}{\mathrm{Then } x + y > 0. \text{ Also, } (x - y)^2 \ge 0.}$ We have $(x^3 + y^3) - xy(x + y) =$ ______(II) Therefore $x^3 + y^3 \ge xy(x + y).$

7. Consider the statement (C):

(C) Let $x, y, z \in \mathbb{R}$. Suppose y > x > 0 and z > -y. Then $\frac{x+z}{y+z} > \frac{x}{y}$ iff z > 0.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate words so that it gives a proof for the statement (C). (*The 'underline' for each blank bears no definite relation with the length of the answer for that blank.*)

Let $x, y, z \in \mathbb{R}$. (I)
Since (II), we have $y + z > 0$. Then, since $y > 0$ also, we have $y(y + z)$ (III).
• (IV) $z > 0.$
Then we have (V) Therefore $(x+z)y = xy + zy > xy + zx = x(y+z)$.
Hence (VI)
Therefore $\frac{x+z}{y+z} > \frac{x}{y}$.
•(VII)
Then $xy + zy = (x + z)y =$ (VIII) $= x(y + z) = xy + zx.$
(IX)
Hence $z > 0$.
It follows that

8. \diamond Prove the statement below:

- Let $m, n \in \mathbb{N} \setminus \{0\}$. Let x be a positive real number. Suppose m > n. Then $x^m + \frac{1}{x^m} \ge x^n + \frac{1}{x^n}$. Moreover, equality holds iff x = 1.
- 9. (a) Prove the statement (\sharp) below:

 $(\sharp) \ \text{Suppose } u,v,x,y \in {\rm I\!R}. \ \text{Then } (ux+vy)^2 \leq (u^2+v^2)(x^2+y^2).$

Remark. This is a 'baby version' of the Cauchy-Schwarz Inequality.

(b) Hence, or otherwise, prove the statement (\flat) below:

(b) Suppose s, t are positive real numbers. Then $(s+t)\left(\frac{1}{s}+\frac{1}{t}\right) \ge 4$.

- 10. (a) \diamond By considering the non-negativity of squares, or otherwise, prove the statement (\sharp) below:
 - (\sharp) Suppose a, b, c, d are positive real numbers. Then $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$.
 - (b) \clubsuit Hence, or otherwise, prove the statement (\flat) below:

(b) Suppose r, s, t are positive real numbers. Then $\frac{r+s+t}{3} \ge \sqrt[3]{rst}$.

Remark. These are 'baby versions' of the Arithmetico-Geometrical Inequality.

11.^{\diamond} Let c, ε be positive real numbers. Define $\delta = \sqrt{c^2 + \varepsilon} - c$.

- (a) Prove that $\delta > 0$.
- (b) Let x be a real number. Suppose $|x c| < \delta$.
 - i. Prove that $|x+c| \leq \sqrt{c^2 + \varepsilon} + c$.
 - ii. Hence, or otherwise, deduce that $|x^2 c^2| < \varepsilon$.

Remark. This is what we have verified overall: For any c > 0, for any $\varepsilon > 0$, there exists some $\delta > 0$, (namely, $\delta = \sqrt{c^2 + \varepsilon} - c$) such that for any $x \in \mathbb{R}$, if $|x - c| < \delta$ then $|x^2 - c^2| < \varepsilon$. Hence we have argued for the continuity of the function t^2 at every positive value of t.

12. Let $n \in \mathbb{N} \setminus \{0\}$.

- (a) \diamond Let $a \in \mathbb{R}$. Suppose a > 1. Prove that $(n+1)(a-1) < a^{n+1} 1 < (n+1)a^n(a-1)$.
- (b)^{\clubsuit} Hence prove the statement below:
 - Let $b \in \mathbb{R}$. Suppose b > 1. Then $b^{n+1} (b-1)^{n+1} < (n+1)b^n < (b+1)^{n+1} b^{n+1}$.
- $(c)^{\diamond}$ Hence prove the statement below:
 - Suppose $m \in \mathbb{N} \setminus \{0,1\}$. Then $\frac{m^{n+1}}{n+1} < \sum_{k=1}^m k^n < \frac{(m+1)^{n+1} 1}{n+1}$.