
MATH1050 Examples on Equivalence Relations

1. Example (A). (‘Congruence modulo n’.)
Let n ∈ N. This will be kept fixed throughout the discussion below.
We introduce the notion of congruence modulo n.
Definition.
Let x, y ∈ Z. x is said to be congruent to y modulo n if x− y is divisible by n. We write x ≡ y(mod n).
Lemma (A1).
The following statements hold:

(ρ): For any x ∈ Z, x ≡ x(mod n).
(σ): For any x, y ∈ Z, if x ≡ y(mod n) then y ≡ x(mod n).
(τ): For any x, y, z ∈ Z, if x ≡ y(mod n) and y ≡ z(mod n) then x ≡ z(mod n).

From now on assume n ≥ 2.
Define En = {(x, y) | x, y ∈ Z and x ≡ y(mod n)}, and Rn = (Z,Z, En).

According to Lemma (A1), Rn is an equivalence relation in Z. (Proof? Exercise.)

Through Rn, we disregard the distinction between two (different) numbers exactly when their difference is divisible by
n. But the latter happens exactly when the two numbers concerned have the same remainder upon division by n.

2. Example (B). (Parallelism in the ‘infinite plane’.)
Recall how parallelism in the ‘infinite plane’ is understood in school geometry:

• Given any two distinct lines in the plane, one is parallel to the other exactly when they have no intersection.

(For the ancient Greeks’ definition, refer to Definition 23, Book I of Euclid’s Elements. It reads: ‘Parallel straight lines
are straight lines which, being in the same plane and being produced indefinitely in both directions, do not meet one
another in either direction.’)
These properties of parallelism is taken for granted:

(1) Given any two (distinct) lines in the plane, if one of them is parallel to the other then the latter is parallel to the
former.
(This is implicit in the definition.)

(2) Given any three (distinct) lines in the plane, if the first is parallel to the second and the second is parallel to the
third then the first is parallel to the third.
(See Proposition 30, Book I of Euclid’s Elements.)

Here we extend the notion of parallelism by a little bit so that the extended notion defines an equivalence relation in the
set of all lines in the ‘infinite plane’. This ‘little bit of extension of definition’ is that we declare that every line is parallel
to itself.
Definition.
Let ℓ,m be lines in R2 (regarded as subsets of R2).

ℓ is said to be parallel to m if (ℓ = m or ℓ ∩m = ∅).

Let Λ be the set of all lines in R2. Define P = {(ℓ,m) | ℓ,m ∈ Λ and ℓ is parallel to m}.

(Λ,Λ, P ) is an equivalence relation: reflexivity is guaranteed by the ‘little bit of extension of definition’ made by us here,
whereas symmetry and transitivity are essentially guaranteed by the properties of parallelism known to us in school
geometry, as listed earlier.
Through this equivalence relation, we disregard the distinction between two distinct lines exactly when the lines concerned
are parallel to each other.

The above idea can be generalized to parallelism for lines in R3 and parallelism for planes in R3.
Definitions.

(a) Let ℓ,m be lines in R3. ℓ is said to be parallel to m if ((ℓ is identical to m) or (ℓ,m lie on the same plane and ℓ,m
have no intersection in R3)).
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(b) Let π, ρ be planes in R3. π is said to be parallel to ρ if ((π is identical to ρ) or (π, ρ has no intersection in R3)).

Let Λ1,3 be the set of all lines in R3, and E1,3 = {(ℓ,m) | ℓ,m ∈ Λ1,3 and ℓ is parallel to m}. (Λ1,3,Λ1,3, E1,3)) is an
equivalence relation.

Let Λ2,3 be the set of all planes in R3, and E2,3 = {(π, ρ) | π, ρ ∈ Λ2,3 and π is parallel to ρ}. (Λ2,3,Λ2,3, E2,3)) is an
equivalence relation.

The same idea can be further generalized to higher dimensional geometry: parallelism for k-dimensional hyperplanes in
the n-dimensional space Rn.

3. Example (C). (Congruence in Euclidean geometry.)
In school maths we learnt the notion of ‘congruence for geometric figures in the plane’, with special emphasis on ‘congruent
triangles’.
The typical ‘textbook definition’ for the notion of congruence might have read:

• Two plane figures are congruent exactly when they are of the same shape and of the same size.

Then came results like ‘SAS’, ‘SSS’, ‘ASA’, ‘AAS’, which give various ‘sufficient conditions’ for pairs of triangles to be
congruent. Probably the symbol ‘∼=’ was introduced in the context. This symbol would obey certain rules:

(ρ): △ABC ∼= △ABC.

(σ): Suppose △ABC ∼= △DEF . Then △DEF ∼= △ABC.

(τ): Suppose △ABC ∼= △DEF and △DEF ∼= △JKL. Then △ABC ∼= △JKL.

These rules suggest that some kind of equivalence relations is lurking behind the notion of ‘congruence for geometric
figures in the plane’.

Let n ∈ N\{0}. This will be kept fixed throughout the discussion below.
Definition.
Let φ : Rn −→ Rn be a bijective function.
φ is called an isometry in Rn if the statement (DP) holds:

(DP) For any x,y ∈ Rn, ∥φ(x)− φ(y)∥ = ∥x − y∥.

Remark. We can in fact drop the assumption on bijectivity in the definition of the notion of isometry. This is due to
the validity of the statement below:

Let ψ : Rn −→ Rn be a function. Suppose that for any x,y ∈ Rn, ∥ψ(x)−ψ(y)∥ = ∥x− y∥. Then there exist some
(n× n)-orthogonal matrix A with real entries and some b ∈ Rn such that for any x ∈ Rn, ψ(x) = Ax + b.

Such a function ψ is bijective.
Definition.
Let S, T be subsets of Rn.

(a) Let φ be an isometry in Rn. The set S is said to be congruent to the set T under the isometry φ if T = φ(S).
We write S ∼=φ T .

(b) The set S is said to be congruent to the set T if there exists some isometry ψ in Rn such that T = ψ(S). When
we do not emphasize which isometry ψ is, we agree to write S ∼= T .

Lemma (C1).
The following statements hold:

(ρ): For any S ∈ P(Rn), S ∼= S.

(σ): For any S, T ∈ P(Rn), if S ∼= T then T ∼= S.

(τ): For any S, T, U ∈ P(Rn), if S ∼= T and T ∼= U then S ∼= U .
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We define the Euclidean congruence in Rn to be the relation in P(Rn) with graph

E∼=,n = {(S, T ) | S, T ∈P(Rn) and S ∼= T}.

The Euclidean congruence in Rn is an equivalence relation in the set P(Rn).

Through this equivalence relation, we disregard the distinction between two distinct subsets in Rn exactly when they are
of the same shape and the same size (so that the image set of one subset under an appropriate isometry ‘fits perfectly’
onto the other subset).

Now ‘congruence of triangles in the plane’ in school geometry can be seen as the Euclidean congruence in R2 ‘restricted’
to some subset of P(R2), namely, the set of all triangles in R2.
Definition.
Let T be a subset of R2. T is said to be a triangle in R2 if T is the union of three non-collinear points in R2 and the
three line segments joining the respective pairs of in those three points.

Remark. Just as congruence for triangles in the Euclidean plane is a special case of congruence in the Euclidean
plane/space/..., similarity for triangles in the Euclidean plane is a special case of ‘similarity in the Euclidean
plane/space/...’. (As an exercise, find out what the appropriate formulation for the latter is.)

4. Example (D). (Row-equivalence for matrices.)

Let p, q ∈ N\{0}. They will be kept fixed throughout the discussion below.
Definition.
Let C,D be (p × q)-matrices with real entries. We say C is row-equivalent to D if there is a finite sequence of row
operations starting from C and ending at D.
Row-equivalence defines an equivalence relation in the set of all (p×q)-matrices with real entries, by virtue of the validity
of Theorem (D1).

Theorem (D1).

The statements (ρ), (σ), (τ) holds:

(ρ): Suppose A is a (p× q)-matrix with real entries. Then A is row-equivalent to A.

(σ): Let A,B be (p× q)-matrices with real entries. Suppose A is row-equivalent to B. Then B is row-equivalent to A.

(τ): Let A,B,C be (p× q)-matrices with real entries. Suppose A is row-equivalent to B, and B is row-equivalent to C.
Then A is row-equivalent to C.

Define E = {(A,B) | A,B ∈ Matp×q(R) and A is row-equivalent to B}, and R = (Matp×q(R),Matp×q(R), E).

According to Theorem (D1), R is an equivalence relation in Matp×q(R).

Through this equivalence relation, we disregard the distinction between two distinct (p × q)-matrices with real entries
exactly when they are row-equivalent to each other.

5. Example (E). (Sets of equal cardinality.)
Recall the definition for the notion of equipotency:
Let S, T be sets. We say that S is of cardinality equal to T , and write S∼T , if there is a bijective function from S to
T .
Let M be a set. This is kept fixed throughout the discussion below.
Theorem (E1).

The statements (ρ), (σ), (τ) hold:

(ρ): Suppose A ∈ P(M). Then A∼A.

(σ): Let A,B ∈ P(M). Suppose A∼B. Then B∼A.

(τ): Let A,B,C ∈ P(M). Suppose A∼B and B∼C. Then A∼C.
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Define EP = {(A,B) | A,B ∈ P(M) and A∼B}, and RP = (P(M),P(M), EP ).

According to Theorem (E1), RP is an equivalence relation in P(M).
Through the equivalence relation RP , we disregard the distinction between two distinct subsets of M exactly when they
are of equal cardinality to each other.

6. Example (F). (‘Contours’ and ‘level sets’.)

(a) Let f : R2 −→ R be the function defined by f(x, y) = x2 + y2 for any x, y ∈ R. This is kept fixed throughout the
discussion below.
The statements below hold:

(ρ): For any p, q ∈ R, f(p, q) = f(p, q).
(σ): For any p, q, s, t ∈ R, if f(p, q) = f(s, t) then f(s, t) = f(p, q).
(τ): For any p, q, s, t, u, v ∈ R, if f(p, q) = f(s, t) and f(s, t) = f(u, v) then f(p, q) = f(u, v).

Define Ef = {((p, q), (s, t)) | p, q, s, t ∈ R and f(p, q) = f(s, t)}, and Rf = (R2,R2, Ef ).
Rf is an equivalence relation in R2. It is (naturally) induced by the function f .

Through the equivalence relation Rf , we disregard the distinction between two distinct points in R2 exactly when
they belong to the same level set of f .
Each such (non-empty) level set of f is a circle with centre at the origin.
Remark. The equivalence relation Rf can be understood through (⋆f ), in terms of solving equations:

(⋆f ) For any p, q, s, t ∈ R, ((p, q), (s, t)) ∈ Ef iff there exists some c ∈ R such that ‘(x, y) = (p, q)’, ‘(x, y) = (s, t)’ are
solutions of the equation x2 + y2 = c with unknown x, y in R.

(b) Let g : R2 −→ R be the function defined by g(x, y) = x2 − y2 for any x, y ∈ R. This is kept fixed throughout the
discussion below.
The statements below hold:

(ρ): For any p, q ∈ R, g(p, q) = g(p, q).
(σ): For any p, q, s, t ∈ R, if g(p, q) = g(s, t) then g(s, t) = g(p, q).
(τ): For any p, q, s, t, u, v ∈ R, if g(p, q) = g(s, t) and g(s, t) = g(u, v) then g(p, q) = g(u, v).

Define Eg = {((p, q), (s, t)) | p, q, s, t ∈ R and g(p, q) = g(s, t)}, and Rg = (R2,R2, Eg).
Rg is an equivalence relation in R2. It is (naturally) induced by the function g.
Through the equivalence relation Rg, we disregard the distinction between two distinct points in R2 exactly when
they belong to the same level set of g.
Each such (non-empty) level set of g is a hyperbola with centre at the origin and with asymptotes ‘y = x’, ‘y = −x’.
Remark. The equivalence relation Rg can be understood through (⋆g), in terms of solving equations:

(⋆g) For any p, q, s, t ∈ R, ((p, q), (s, t)) ∈ Eg iff there exists some c ∈ R such that ‘(x, y) = (p, q)’, ‘(x, y) = (s, t)’ are
solutions of the equation x2 − y2 = c with unknown x, y in R.

7. Example (G). (Solutions of systems of linear equations with a common matrix of coefficients.)

Let A be an (m× n)-matrix with real entries. This matrix A is fixed throughout the discussion.
The statements below hold:

(ρ): For any u ∈ Rn, Au = Au.

(σ): For any u,v ∈ Rn, if Au = Av then Av = Au.

(τ): For any u,v,w ∈ Rn, if Au = Av and Av = Aw then Au = Aw.

Define the relation SA = (Rn,Rn, EA) by EA = {(u,v) | u,v ∈ Rn and Au = Av}.
SA is an equivalence relation in Rn.
The equivalence relation SA can be understood through (⋆A), in terms of solving equations:

(⋆A) (u,v) ∈ EA iff there exists some b ∈ Rm such that u,v belong to the solution set of the equation Ax = b with
unknown x in Rn.
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Therefore, through the equivalence relation SA, we disregard the distinction between two distinct vectors in Rn exactly
when both are solutions to the equation with ‘coefficient matrix’ A and with the same ‘vector of constant’.

Remark. SA can be seen to be the equivalence relation (naturally) induced by a function from Rn to Rm.

Define the function LA : Rn −→ Rm by LA(x) = Ax for any x ∈ Rn.

(LA is called the linear transformation defined by matrix multiplication from the left by A.)

By definition, for any u,v ∈ Rn, (u,v) ∈ EA iff LA(u) = LA(v).
Therefore, through the equivalence relation SA, we disregard the distinction between two distinct vectors in Rn exactly
when they belong to the same level set of LA.

8. Example (H). (Primitives of continuous functions.)
Let I be an open interval in R. This is kept fixed throughout the discussion below.

Denote by C1(I) the set of all real-valued functions with domain I which is continuously differentiable on I.

Differentiation defines an equivalence relation in C1(I), by virtue of the validity of Theorem (H1).

Theorem (H1).

The statements (ρ), (σ), (τ) hold:

(ρ): Suppose f ∈ C1(I). Then f ′ = f ′ as functions.

(σ): Let f, g ∈ C1(I). Suppose f ′ = g′ as functions. Then g′ = f ′ as functions.

(τ): Let f, g, h ∈ C1(I). Suppose f ′ = g′ as functions and g′ = h′ as functions. Then f ′ = h′ as functions.

Define ED = {(f, g) | f, g ∈ C1(I) and f ′ = g′}, and RD = (C1(I), C1(I), ED).

RD is an equivalence relation in C1(I).
Through the equivalence relation RD, we disregard the distinction between two distinct continuously differentiable
functions on I exactly when they are primitives of the same continuous function on I.
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