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CHAPTER I

ON FUNCTIONS IN GENERAL

1. A constant quantity is a determined quantity which always keeps the same value. ...

2. A variable quantity is one which is not determined or is universal, which can take on any value. ...

3. A variable quantity is determined when some definite value is assigned to it. ...

4. A function of a variable quantity is an analytic expression composed in any way whatsoever of the

variable quantity and numbers or constant quantities. Hence every analytic expression, in which

all component quantities except the variable z are constants, will be a function of that z; thus

a+ 3z; zz − 4z2; az + b
√
a2 − z2; cz; et cetera are functions of z. ...

B. Euler’s Institutiones Calculi Differentialis [1755] (translated by Blanton [2000])

PREFACE

In order that this difference between constant quantities and variables might be clearly illustrated, let

us consider a shot fired from a cannon with a charge of gunpowder. ... There are many quantities

involved here: First, there is the quantity of gunpowder; then, the angle of elevation of the cannon

above the horizon; third, the distance travelled by the shot; and fourth, the length of time the shot is

in the air. ... At the same time, it must be understood from this that in this business the thing that

requires the most attention is how the variable quantities depend on each other. When one variable

changes, the others necessarily are changed. For example, in the former case considered, the quantity

of powder remains the same, and the elevation is changed; then the distance and duration of the flight

are changed. Hence, the distance and duration are variables that depend on the elevation; if this

changes, then the other also change at the same time. In the latter case, the distance and duration

depend on the quantity of charge of powder, so that a change in the charge must result in certain

changes in other variables.

Those quantities that depend on others in this way, namely, those that undergo a change when others

change, are called functions of these quantities. This definition applies rather widely and includes all

ways in which one quantity can be determined by others. Hence, if x designates the variable quantity,

all other quantities that in any way depend on x or are determined by it are called its functions.

Examples are x2, the square of x, or any other powers of x, and indeed, even quanitites that are

composed with these powers in any way, even transcendentals, in general, whatever depends on x in

such a way that when x increases or decreases, the function changes. ...

C. Lagrange’s Théorie des fonctions analytiques [Second Edition 1813] (Stedall’s Mathematics Emerging [2008])

INTRODUCTION

Functions in general. ...

One calls a function of one or more quantities every expression of calculus in which the quantities

enter in any manner, mixed or not with other quantities that one regards as having given and fixed

values, as long as the quantities in the function may receive every possible value. Thus, in functions,

one considers only the quantities that one supposes variable, without any regard to constants which

may be mixed with them.

The word function was employed by the first analysts to denote, in general, powers of the same quantity.

Since then one has understood this word to mean every quantity formed in any manner whatever from

another quantity. Leibniz and the Bernoullis employed it in this general sense, and it is today generally

accepted. ...

D. Cauchy’s Cours d’Analyse de l’École Royale Polytechnique [1821] (translatedd by Bradley and Sandifer

[2009])

CHATPER I

ON REAL FUNCTIONS
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1.1 General Considerations on Functions.

When variable quantities are related to each other such that the value of one of the variables being

given one can find the values of all the other variables, we normally consider these various quantities

to be expressed by means of the one among them, which therefore takes the name the independent

variable. The other quantities expressed by means of the independent variables are called functions of

that variable.

When variable quantities are related to each other such that the value of some of them being given

one can find all of the others, we consider these various quantities to be expressed by means of several

among them, which therefore take the name independent variables. The other quantities expressed by

means of the independent variables are called functions of those same variables.

The various expressions that are used in algebra and trigonometry, when they involve variables that

are considered to be independent, are also functions of these same variables. And so, for example,

log(x), sin(x), ... are functions of the variable x, while x+ y, xy, xyz, ... are functions of the variables

x and y, or of x, y and z, ...

When the functions of one or several variables are directly expressed, as in the preceding examples,

by means of those same variables, they are called explicit functions. But when they are given only as

relations among the functions and the variables, that is to say the equations that the quantities must

satisfy, as long as the equations are not solved algebraically, the functions are not expressed directly

by means of the variables, then they are called implicit functions. To make them explicit, it suffices

to solve, when it is possible, the equations that determine them. For example, when y is given by

the equation log(y) = x, then it is an implicit function of x. If we let A be the base of the system

of logarithms being considered, the same function made explicit by solving the given equation will be

y = Ax.

When we want to denote an explicit function of a single variable x or of several variables, x, y, z, ...,

without specifying the nature of that function, we use one of the notations, f(x), F (x), φ(x), χ(x),

ψ(x), ̟(x), ..., f(x, y, z, ...), F (x, y, z, ...), φ(x, y, z, ...), ... . ...

E. Fourier’s Théorie analytique de la chaleur [1822] (Stedall’s Mathematics Emerging [2008])

... In general, the function f(x) represents a series of values, or ordinates, each of which is arbitrary.

The abscissa may take an infinite number of values, and there are the same number of ordinates f(x).

All have for the time being numerical values, positive, negative, or zero. one does not at all suppose

that the ordinates are subject to a common law: they succeed each other in any manner whatsoever,

and each is given as if it were a single quantity. ...

F. Weierstrass’s lectures on the differential calculus [1861] (Calinger’s Classics of Mathematics [1982])

... Two variable magnitudes may be related in such a way that to every definite value of one there

corresponds a definite value of the other; then the latter is called a function of the former. This

relationship may extend to several variable magnitudes; accordingly one distinguishes functions with

one and with several variable magnitudes. If to one value of the one variable magnitude there always

corresponds only one value of another, then the latter is called an unambiguous function and single-

valued function of the former. If to one value of the one magnitude there correspond several values of

another, then the latter is called a multi-valued function of the former. The criterion of a function is

that the one variable magnitude changes in general by a definite amount as soon as a definite change

of the other one is assumed. ...

G. Dedekind’s Was sind und was sollen die Zahlen? [1888] (translated by Beman [1901])

... By a transformation1 φ of a system2 S we understand a law according to which to every determinate

element s of S there belongs a determinate thing which is called the transform of s and denoted by

φ(s); we say also that φ(s) corresponds to the element s, that φ(s) results or is produced from s by

the transformation φ, that s is transformed into φ(s) by the transformation φ. ...

1Read function.
2Read set.
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H. Goursat’s Cours d’analyse mathématique [1902] (translated by Hedrick [1904])

CHAPTER I

DERIVATIVES AND DIFFERENTIALS

I. FUNCTIONS OF A SINGLE VARIABLE

1. Limits. ...

2. Functions. When two variable quantities are so related that the value of one of them depends upon

the value of the other, they are said to be functions of each other. If one of them be supposed

to vary arbitrarily, it is called the independent variable. Let this variable be denoted by x, and

let us suppose, for example, that it can assume all values between two given numbers a and b

(a < b). Let y be another variable, such that to each value of x between a and b, and also for

the values a and b themselves, there corresponds one definitely determined value of y. Then y is

called a function of x, defined in the interval (a, b); and this independence is indicated by writing

the equation y = f(x). For instance, it may happen that y is the result of certain arithmetical

operations performed upon x. ... A function may also be defined graphically. ... In short, any

absolutely arbitrary law may be assumed for finding the value of y from that of x. The word

function, in its most general sense, means nothing more nor less than this: to every value of x

corresponds a value of y.

I. Hardy’s A course of Pure mathematics (Tenth Edition) [1952]

CHAPTER II

FUNCTIONS OF REAL VARIABLES

20. The idea of a function. Suppsoe that x and y are two continuous real variables, which we may

suppose to be represented by distances A0P = x, B0Q = y measured from fixed points A0, B0

along two straight lines Λ,M . And let us suppose that the positions of the points P and Q are

not independent, but are connected by a relation which we can imagine expressed as a relation

between x and y; so that, when P and x are known, Q and y are also known. We might, for

example, suppose that y = x, or 2x, or 1

2
x, or x2+1. In all of these cases the value of x determines

that of y. Or again we might suppose that the relation between x and y are given, not by means of

an explict formula for y in terms of x, but by means of a geometrical construction which enables

us to determine Q when P is known.

In these circumstances y is said to be a function of x. This notion of functional dependence of one

variable upon another is perhaps the most important in the whole range of higher mathematics.

In order to enable the reader to be certain that he understands it clearly, we shall, in this chapter,

illustrate it by means of a large number of examples.

But before we proceed to do this, we must point out that the simple examples of functions men-

tioned above possess three characteristics which are by no means involved in the general idea of a

function, viz.:

(1) y is detemined for every value of x;

(2) to each value of x for which y is given corresponds one and only one value of x;

(3) the relation between x and y is expressed by means of an analytical formula, for which the

value of y corresponding to a given value of x can be calculated by direct substitution of the

latter.

It is indeed the case that these particular characteristics are possessed by many of the most

important functions. But the consideration of the following examples will make it clear that they

are by no means essesntial to a function. All that is essential is that there should be some relation

between x and y such that to some values of x at any rate correspond values of y.

Examples X.

1. Let y = x or 2x or 1

2
x or x2 + 1. Nothing further need be said at present about cases such as

these.

2. Let y = 0 whatever be the value of x. Then y is a function of x, for we can give x any value,

and the corresponding value of y (viz. 0) is known. In this case the functional relation makes

the same value of y correspond to all values of x. The same would be true were y equal to 1

or − 1

2
or
√
2 instead of 0. Such a function of x is called a constant.
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3. Let y2 = x. Then if x is positive this equation defines two values of y corresponding to each

value of x, viz. ±√x. If x = 0, y = 0. Hence to the particular value 0 of x corresponds one

and only one value of y. But if x is negative there is no value of y which satisfies the equation.

That is to say, the function y is not defined for negative values of x. This function therefore

possesses the characteristic (3), but neither (1) nor (2).

4. Consider a volume of gas maintained at a constant temperature and constained in a cylinder

closed by a sliding piston.

Let A be the area of the cross-section of the piston and W is weight. The gas, held in a state

of compression by the piston, exerts a certain pressure p0 per unit of area on the piston, which

balances the weight W , so that

W = Ap0.

Let v0 be the volume of the gas when the system is thus in equilibrium. If additional weight is

placed upon the piston the latter is forced downwards. The volume (v) of the gas diminishes;

the pressure (p) which it exerts upon the unit area of the piston increases. Boyle’s experimental

law asserts that the product of p andv is very nearly constant, a correspondance which, if exact,

would be represented by an equation of the type

pv = a · · · · · · · · · · · · (i),

where a is a number which can be determined approximately by experiment.

Boyle’s law, however, only gives a reasonable approximation to the facts provided the gas is

not compressed too much. When v is decreased and p increased beyond a certain point, the

relation between them is no longer expressed with tolerable exactness by the equation i. It is

known that a much better approximation to the true relation can then be found by means of

what is known as ‘van der Waal’s law’, expressed by the equation

(

p+
α

v2

)

(v − β) = a · · · · · · · · · · · · (ii),

where α, β, γ are numbers which can also be determined approximately by experiment.

Of course the two equations, even taken together, do not give anything like a complete account

of the relation between p and v. This relation is no doubt in reality much more complicated,

and its form changes, as v varies, from a form nearly equivalent to (i) to a form nearly

equivalent to (ii). But, from a mathematical point of view, there is nothing to prevent us from

contemplating an ideal state of things in which, for all values of v not less than a certain value

V , (i) would be exactly true, and (ii) exactly true for all value of v less than V . And then

we might regard the two equations as together defining p as a function v. It is an example of

a function which for some values of v is defined by one formula and for other values of v is

defined by another.

This function possess the characteristic (2); to anty value of v only one value of p corresponds;

but it does not possess (1). For p is not defined as a function of v for negative values of v; a

‘negative volume’ means nothing, and negative values of v are irelevant.

5. Suppose that a perfectly elastic ball is dropped (without rotation) from a height 1

2
gr2 on to a

fixed horizontal plane, and rebounds continually.

The ordinary formulae of elementary dynamics, with which the reader is probably familiar,

show that h = 1

2
gt2 if 0 ≤ t ≤ r, h = 1

2
(2r − t)2 if r ≤ t ≤ 3r, and generally

h =
1

2
g(2nr − t)2

if (2n−1)r ≤ t ≤ (2n+1)r, h being the depth of the ball, at time t, below its original position.

Here also h is a function of t which is only defined for positive values of t.

6. Suppose that y is defined as being the largest prime factor of x. This is an instance of a

definition which only applies to a particular class of values of x, viz. integral values . ‘The

largest prime factor’ of 11

3
of of

√
2 or of π’ means nothing, and so our defining relation fails

to define for such values of x as these. Thus this function does not possess the characteristic

(1). It possesses (2), but not (3), since there is no simple formula which expresses y in terms

of x.
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7. Let y be defined as the denominator of x when x is expressed in its lowest terms. This is an

example of a function which is defined if and only if x is rational. Thus y = 7 if x = −11/7,
but y is not defined for x =

√
2.

21. The graphical representation of functions. ...

22. Polar coordinates. ...

23. Further examples of functions and their graphical representation. The examples which

follow will give the reader a better notion of the infinite variety of possible types of functions.

A. Polynomials. ...

24. B. Rational functions. ...

25. The graphical study of rational functions depends, even more than that of polynomials, on the

methods of the differential calculus. ...

26. C. Explicit algebraic functions. ...

27. D. Implicit algebraic functions. ...

28. Transcendental functions. ...

E. The direct and inverse trigonometric or circular functions. ...

29. F. Other classes of transcendental functions. Next in importance to the trigonometrical

functions come the exponential and logarithmic functions, which will be discussed in Chs. IX and

X. But these functions are beyond our range at present. And most of the other classes of transcen-

dental functions whose properties have been studied, such as the elliptic functions, Bessel’s and

Legendre’s functions, gamma-functions, and so forth, lie altogether beyond the scope of this book.

There are however some elementary types of functions which, though of much less importance the-

oretically than the rational, algebraical, or trigonometrical functions, are particulary instructive

as illustrations of the possible varieties of the functional relation. ...

CHAPTER X

THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNC-

TIONS

227. Functions of a complex variable. In Ch. III we defined the complex variable

z = x+ iy,

and we considered a few simple properties of some classes of expressions involving z, such as the

polynomial P (z). It is natural to describe such expressions as functions of z, and in fact we did

describe the quotient P (z)/Q(z), where P (z) and Q(z) are polynomials, as a ‘rational function’.

We have however given no general definition of what is meant by a function of z.

It might seem natural to define a function of z in the same way as that in which we defined a

function of the real variable x, i.e. to say that Z is a function of z if there is any relation between

z and Z in virtue of which a value of values of Z corresponds to some or all values of z. But it

will be found, on closer examination, that this definition is not one from which any profit can be

derived. For if z is given, so are x and y, and conversely: to assign a value of z is just the same

thing as to assign a pair of values of x and y. Thus a ‘function of z’, according to the definition

suggested, is merely a complex function

f(x, y) + ig(x, y),

of two real variables x and y. For example,

x− iy, xy, |z| =
√

x2 + y2, am(z) = arctan(y/x)

are ‘functions of z’. The definition, although quite legitimate, is futile because it does not really

define a new idea at all.

It is therefore more convenient to use the expression ‘function of the complex variable z’ in a more

resstricted sense, or in other words to pick out, from the general class of complex functions of the

two real variables x and y, a special class to which the expression shall be restricted. If we were to

explain how this selection is made, and what are the characteristic properties of the special class

of functions selected, we should be led fra beyond the limits of this book. We shall therefore not

attempt to give any general definitions, but shall confine ourselves entirely to special functions

defined directly.
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J. Tarski’s Introduction to Logic and to the Methodology of Deductive Sciences (Second Edition) [1946]

32. One-many relations or functions

We will now deal in some detail with another particularly important category of relations. A relation

R is called a ONE-MANY or FUNCTIONAL RELATION or simply a FUNCTION if, to every thing

y there corresponds at most one thing x such that xRy; in other words, if the formulas:

xRy and zRy

always imply the formula:

x = z.

The successors with respect to the relation R, that is, thos things y for which there acutally are things

x such that

xRy,

are the ARGUMENT VALUES, the predecessors are the FUNCTION VALUES or, simply, the VAL-

UES OF THE FUNCTION R. Let R be an arbitary function, y any one of its argument values; the

unique value x of the function corresponding to the value y of the argument we will denote by the

symbol “R(y)”; consequently we replace the formula:

xRy

by:

x = R(y).

It has become the custom, especially in mathematics, to use, not the variables “R”, “S”, ..., but other

letters such as “f”, “g”, ... to denote functional relations, so that we find formulas like these:

x = f(y), x = g(y), · · · ;

the formula:

x = f(y),

for instance, is read as follows:

the function f assigns (or correlates) the value x to the argument value y

or

x is that value of the function f which corresponds to (or is correlated with) the argument value y.

(There is also another custom, of using the variable “x” for denoting the argument value and the

variable “y” for denoting the value of the function. We shall not adhere to this custom, and continue

to use “x” and “y” in the opposite order, because this is more convenient in connection with the general

notation used in the theory of relations.)

In many elementary textbooks of algebra a definition of the concept of a function is to be found that

is quite different from the definition adopted here. The functional relation is there characterized as a

relation between two “variable” quantities or numbers: the “independent variable” and the “dependent

variable”, which depend upon each other in so far as a change of the first effects a change of the second.

Definitions of this kind should no longer be employed today, since they are incapable of standing up

to anly logical criticism; they are the remains of a period which one tried to distinguish between

“constant” and “variable” quantitites (cf. Section 1). He who desires to comply with the requirements

of contemporary science and yet does not wish to break away completely from tradition, may, however,

retain the old terminology and use, beside the terms “argument value” and “function value”, the

expressions “value of the independent variable” and “value of the dependent variable”.

The simplest example of a functional relation is represented by the ordinary relation of identity. As an

example of a funciton from everyday life let us take the relation expressed by the sentential function:

x is father of y.

It is a functional relation, since, to every person y, there exists but one person x who is father of y.

In order to indicate the functional character of this relation, we insert the word “the” in the above

formulation:

6



x is the father of y,

instead of which we might also write:

x is identical with the father of y.

Such an alteration of the original expression, involving the insertion of the definite article, serves, in

ordinary language, exactly the same purpose as the transition from the formula:

xRy

to the formula

x = R(y)

in our symbolism.

The concept of a function plays a most important role in the mathematical sciences. There are whole

branches of higher mathematics devoted exclusively to the study of certain kinds of functional relations.

But also in elementary mathematics, especially in algebra and trigonometry, we find an abundance of

functional relations. Examples are the relations expressed by such formulas as:

x+ y = 5,

x = y2,

x = log
10
y,

x = sin y,

and many others. Let us consider the second of these formulas more closely. To every number y, there

corresponds only one number x such that x = y2, so that the formula really does represent a functional

relation. Argument values of this function are arbitrary numbers, values of the function, however, only

non-negative numbers. If we denote this function by the symbol “f”, the formmula:

x = y2

assumes the form:

x = f(y).

Evidently “x” and “y” may here be replaced by symbols designating definite numbers. Since, for

instance,

4 = (−2)2,

it may be asserted that

4 = f(−2);

thus, 4 is the value of the function f corresponding to the argument value −2.
On the other hand, and again in elementary mathematics already, we encounter numerous relations

which are not functions. For example, the relation of being smaller is certainly not a function, since,

to every number y, there are infinitely many numbers x such that

x < y.

Nor is the relation between the numbers x and y expressed by the formula:

x2 + y2 = 25

a functional relation since, to one and the same number y, there may correspond two different numbers

x for which the formula is valid; corresponding to the number 4, for instance, we have both the numbers

3 and −3. It may be noted that relations between numbers which, lik the one just considered, are

expressed by equations and correlate with one number y two or more numbers x are sometiems called

in mathematics two- or many-valued functions (in opposition to single-valued functions, that is, to

functions in the ordinary meaning). It seems, however, inexpedient — at least on an elementary level

— to denote such relations as functions, for this only tends to blot out the essential difference between

the notion of a function and the more general one of a relation.
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Functions are of particular significance as far as the application of mathematics to the empirical sciences

is concerned. Whenever we inquire into the dependence between two kinds of quantities occuring in

the external world, we strive to give this dependence the form of a mathematical formula, which would

permit us to determine exactly the quantity of the one kind by the corresponding quantity of the other;

such a formula always represents some functional relation between the quantitites of two kinds. As an

example let us mention the well-known formula from physics:

s = 16.1t2

expressing the dependence of the distance s, covered by a freely falling body, upon the time t of its

fall (the distance being measured in feet and the time in seconds). ...

33. One-to-one relations or biunique functions, and one-to-one correspondences

Among the functional relations particular attention should be paid to the so-called ONE-ONE RE-

LATIONS or BIUNIQUE FUNCTIONS, that is, to those functional relations in which not only every

argument value y only one function value x is correlated, but also converselyonly one argument value y

corresponds to every value x of the function; they might also be defined as those relations which have

the property that their converses (cf. Section 28) as well as the relations themselves are one-many.

If f is a biunique funciton, K an arbitrary class of its argument values, and L the class of function values

correlated with the elements of K, we say that the function f MAPS THE CLASS K ON THE CLASS

L IN A ONE-TO-ONE MANNER, or that it ESTABLISHES A ONE-TO-ONE CORRESPONDENCE

BETWEEN THE ELEMENTS OF K AND L.

Let us consider a few examples. Suppose we have a half-line issuing from the point O, with a segment

marked off indicating the unit of length. Further let Y be any point on the half-line. Then the segment

OY can be measured, that is to say, one can correlate with it a certain non-negative number x called

the length of the segment. Since this number depends exclusively on the position of the point Y , we

may denoted it by the symbol “f(Y )”; we consequently have:

x = f(Y ).

But conversely, to every non-negative number x, we may also construct a uniquely determined segment

OY on the half-line under consideration, whose length equals x; in other words, to every x, there

corresponds exactly one point Y such that

x = f(Y ).

The function f is, therefore, biunique; it establishes a one-to-one correspondence between the points

of the half-line and the non-negative numbers (and it would be equally simple to set up a one-to-one

correspondence between the points of the entire line and all real numbers). Another example is supplied

by the relation expressed by the formula:

x = −y.

This is a biunique function since, to every number x, there is only one number y satisfying the given

formula; it can be seen at once that this function maps, for instance, the set of all positive numbers on

the set of all negative numbers in a one-to-one manner. As a last example let us consider the relation

expressed by the formula:

x = 2y

under the assumption that the symbol “y” here denotes natural numbers only. Again we have a

biunique function; it correlates with every natural number y and even number 2y; and vice versa —

to every even natural number x there corresponds just one number y such that 2y = x, namely, the

number y = 1

2
x. The function thus establishes a one-to-one correspondence between arbitrary natural

numbers and even natural numbers. — Numerous examples of biunique functions and one-to-one

mappings can be drawn from the field of geometry (symmetric, collinear mappings, and so on). ...

K. Suppes’ Axiomatic Set Theory [1960]

Functions. Since the eighteenth century, clarification and generalization of the concept of a function

have attracted much attention. Fourier’s representation of “arbitrary” functions (actually piecewise
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continuous ones) by trigonometric series encountered much opposition; and later when Weierstrass

and Riemann gave examples of continuous functions without derivatives, mathematicians refused to

consider them seriously. Even today many textbooks of the differential and integral calculus do not

give a mathematically satisfactory definition of functions. An exact and completely general definition

is immediate within our set-theoretical framework. A function is simply a many-one relation, that is, a

relation which to any element in its domain relates exactly one element in its range. (Of course, distinct

elements in the domain may be related to the same element in the range.) The formal definition is

obvious.

Definition 39.

f is a function ←→ f is a relation ∧ (∀x)(∀y)(∀z)(xfy ∧ xfz −→ y = z).

L. Halmos’ Naive Set Theory [1960]

SECTION 7

RELATIONS

Using ordered pairs, we can formulate the mathematical theory of relations in set-theoretic language.

By a relation we mean here something like marriage (between men and women) or belonging (between

elements and sets). More explicitly, what we shall call a relation is sometimes called a binary relation.

An example of a ternary relation is parenthood for people (Adam and Eve are the parents of Cain).

In this book we shall have no occasion to treat the theory of relations that are ternary, quaternary, or

worse.

Look at any specific relation, such as marriage for instance, we might be tempted to consider certain

ordered pairs (x, y), namely just those for which x is a man, y is a woman, and x is married to y.

We have not yet seen the definition of the general concept of a relation, but it seems plausible that,

just as in this marriage example, every relation should uniquely determine the set of all those ordered

pairs for which the first coordinate does stand in that relation to the second. If we know the relation,

we know the set, and better yet, if we know the set, we know the relation. If, for instance, we were

presented with the set of ordered pairs of people that corresponds to marriage, then, even if we forgot

the definition of marriage, we could always tell when a man x is married to a woman y and when not;

we would just have to see whether the ordered pair (x, y) does or does not belong to the set.

We may not know what a relation is, but we do know what a set is, and the preceding considerations

establish a close connection between relations and sets. The precise set-theoretic treatment of relations

takes advantage of that heuristic connection; the simplest thing to do is to define a relation to be the

corresponding set. This is what we do; we hereby define a relation as a set of ordered pairs. Explicitly;

a set R is a relation if each element of R is an ordered pair; this means, of course, that if z ∈ R, then
there exist x and y so that z = (x, y). If R is a relation, it is sometimes convenient to express the fact

that (x, y) ∈ R by writing

xRy

and saying, as in everyday language, that x stands in the relation R to y. ...

In the preceding section we saw that associated with every set R of ordered pairs there are two sets

called the projections of R onto the first and second coordinates. In the theory of relations these sets

are known as the domain and the range of R (abbreviated dom R and ran R); we recall that they are

defined by

dom R = {x : for some y (xRy)}

and

ran R = {y : for some x (xRy)}.

If R is the relation of marriage, so that xRy menas that x is a man, y is a woman, and x and y are

married to one another, then dom R is the set of married men and ran R is the set of married women.

...

SECTION 8

FUNCTIONS

If X and Y are sets, a function from (or on) X to (or into) Y is a relation f such that dom f = X

and such that for each x in X there is a unique element y in Y such that (x, y) ∈ f . The uniqueness

condition can be formulated explicitly as follows: if (x, y) ∈ f and (x, z) ∈ f , then y = z. For each x
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in X, the unique y in Y such that (x, y) ∈ f is denoted by f(x). For functions this notation and its

minor variants supersede the others used for more general relations; from now on, if f is a function, we

shall write f(x) = y instead of (x, y) ∈ f or xfy. The element y is called the value that the function f

assumes (or takes on) at the argument x; equivalently we may say that f sends or maps or transforms

x onto y. The words map or mapping, transformation, correspondence, and operator are among some

of the many that are sometimes used as synonyms for function. The symbol

f : X −→ Y

is sometimes used as an abbreviation for “f is a function from X to Y .” The set of all functions from

X to Y is a subset of the power set P(X × Y ); it will be denoted by Y X .

The connotations of activity suggested by synonyms listed above make some scholars dissatisfied with

the definition according to which a function does not do anything but merely is. This dissatisfaction

is reflected in a different use of the vocabulary: function is reserved for the undefined object that is

somehow active, and the set of ordered pairs that we have called the function is then called the graph

of the function. It is easy to find examples of functions in the precise set-theoretic sense of the word in

both mathematics and everyday life; all we have to look for is information, not necessarily numerical,

in tabulated form. One example is a city directory; the arguments of the function are, in this case, the

inhabitants of the city, and their values are their addresses. ...

M. Bourbaki’ Elements of Mathematics: Theory of Sets [1970]

4. FUNCTIONS

Definition 9. A graph F is said to be a functional graph if for each x there is at most one object which

corresponds to x under F (Chapter I, §5, no. 3). A correspondence f = (F,A,B) is said to be a

function if its graph F is a functional graph and if its source A is equal to its domain pr1F. In other

words, a correspondence f = (F,A,B) is a function if for every x belonging to the source A of f the

relation (x, y) ∈ F is functional in y (Chapter I, §5, no. 3); the unique object which corresponds to x

under f is called the value of f at the element x of A, and is denoted by f(x) (or fx, or F(x), or Fx).

If f is a function, F its graph, and x an element of the domain of f , the relation y = f(x) is then

equivalent to (x, y) ∈ F (Chapter I, §5, no. 3, criterion C46). ...

Let A and B be two sets; a —it mapping of A into B is a function f whose source (which is equal to

its domain) is equal to A and whose target is equal to B; such a function is also said to be defined on

A and to take its values in B. ...

A function f is defined on A is said to transform x into f(x) (for all x ∈ A); f(x) is called the

transform of x by f (by abuse of language) the image of x under f . ...

10


