1. **Definitions**.

- Let A, B be sets and $f : A \longrightarrow B$ be a function from A to B.
- (a) Let S be a subset of A. The **image set of the set** S **under the function** f is defined to be the set

 $\{y \in B : \text{There exists some } x \in S \text{ such that } y = f(x)\}.$

It is denoted by f(S).

(b) Let U be a subset of B. The **pre-image set of the set** U **under the function** f is defined to be the set

 $\{x \in A : \text{There exists some } y \in U \text{ such that } y = f(x)\}.$

It is denoted by $f^{-1}(U)$.

2. Theorem (1).

Let A, B be sets, and $f : A \longrightarrow B$ be a function. The following statements hold:

(1a) $f(\emptyset) = \emptyset$. (1b) $f^{-1}(\emptyset) = \emptyset$. (1c) $f(A) \subset B$. (1d) $f^{-1}(B) = A$. (1b) Let $x \in A$. $f(\{x\}) = \{f(x)\}$. (1c) Let $x \in A$, $y \in B$. The statements below are logically equivalent: (i) $x \in f^{-1}(\{y\})$. (ii) $f(x) \in \{y\}$. (iii) f(x) = y. 3. Theorem (2).

Let A, B be sets, and $f : A \longrightarrow B$ be a function. The following statements hold: (2a) Let S, T be subsets of A. Suppose $S \subset T$. Then $f(S) \subset f(T)$. (2b) Let H, K be subsets of A. (1) $f(H \cup K) \supset f(H) \cup f(K)$. (2) $f(H \cup K) \subset f(H) \cup f(K)$. (3) $f(H \cup K) = f(H) \cup f(K)$.

(2c) Let H, K be subsets of A. $f(H \cap K) \subset f(H) \cap f(K)$.

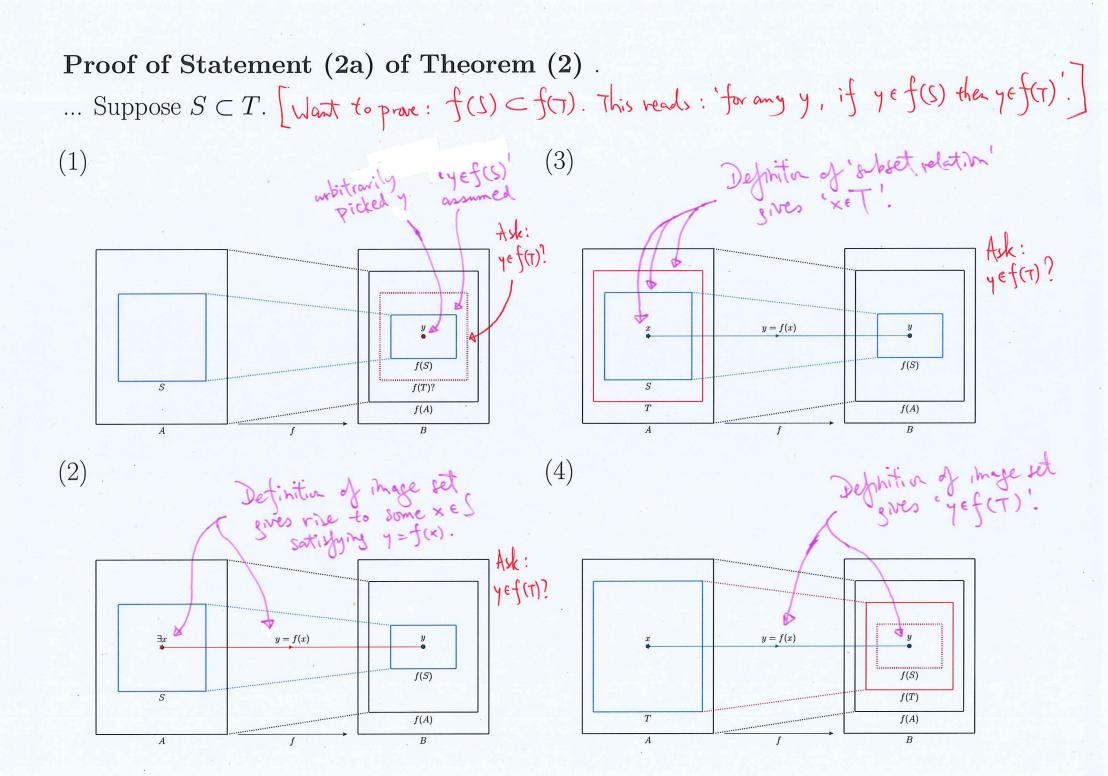
4. Proof of Statement (2a) of Theorem (2).

Let A, B be sets and $f : A \longrightarrow B$ be a function. Let S, T be subsets of A. Suppose $S \subset T$. [We want to deduce that $f(S) \subset f(T)$.

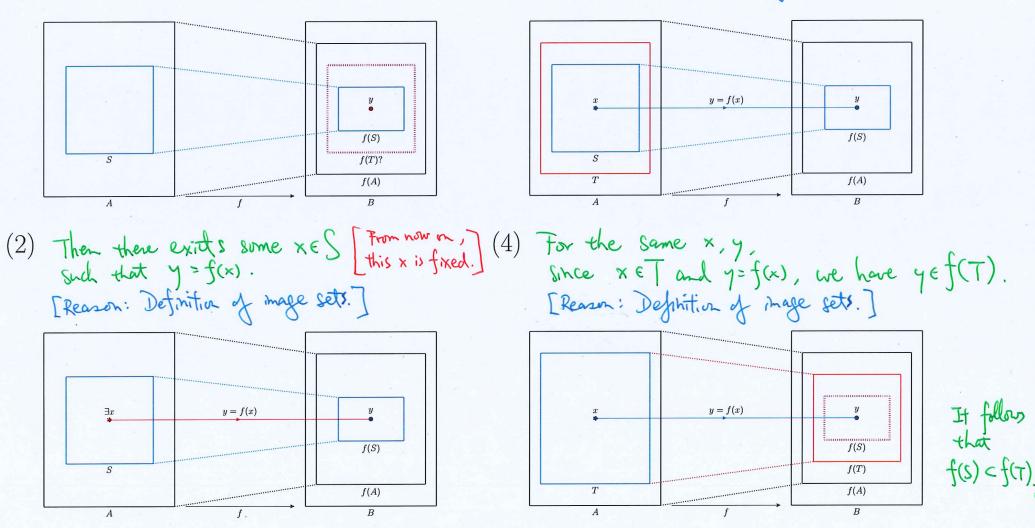
What to do, really? We want to prove:

'For any object y, if $y \in f(S)$ then $y \in f(T)$.'

Think about this before proceeding any further.]



Proof of Statement (2a) of Theorem (2). ... Suppose $S \subset T$. [Want to prove : $f(S) \subset f(T)$. This reads : for any y, if ye f(S) then $y \in f(T)$.] Since XES and SET, we have XE. (1) Pick any object y. [From now on, this y is fixed.] (3) Suppose yef(S). [Want to deduce : yef(T).] [Reason: Definition of notion of subset.]



5. Proof of Statement (2b) of Theorem (2).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let H, K be subsets of A.

(1) [We want to prove that $f(H) \cup f(K) \subset f(H \cup K)$.] Note that $H \subset H \cup K$. Then, by (2a), we have $f(H) \subset f(H \cup K)$. Also note that $K \subset H \cup K$. Then, by (2a), we have $f(K) \subset f(H \cup K)$. Since f(H) < f(HUK) and f(K) < f(HUK), we have f(H)Uf(K) < f(HUK). (2) [We want to prove that $f(H \cup K) \subset f(H) \cup f(K)$. What to do, really? We want to prove: "For any object y, if y ∈ f(HUK) then y ∈ f(H) U f(K). Think about this before proceeding any further.] * (Case 2). Suppose XEK. Pick any object y. Suppose yef(HUK). Then, by the definition of image sets, [---] Therefore yE f(H) Uf(K). there exists some XE HUK such that y=f(x). Since XEHUK, we have XEH or XEK. Hence, in any case, ye f(H) u f(K). * (Casel). Suppre XEH. Since xeH and y=f(x) we have y ef(H). Then y e f(H) or y e f(K). Therefore y e f(H) U f(K). (I+ follows that f(Huk) ~ f(H) いf(k). (3) By (2b1), (2b2), we have $f(H \cup K) = f(H) \cup f(K)$.

6. Proof of Statement (2c) of Theorem (2).

Let A, B be sets and $f : A \longrightarrow B$ be a function. Let H, K be subsets of A. [We want to prove $f(H \cap K) \subset f(H) \cap f(K)$.]

• Note that $H \cap K \subset H$. Then, by (2a), we have $f(H \cap k) \subset f(H)$. Also note that $H \cap k \subset K$. Then, by (2a), we have $f(H \cap k) \subset f(k)$. Since $f(H \cap k) \subset f(H)$ and $f(H \cap k) \subset f(k)$, we have $f(H \cap k) \subset f(H) \cap f(k)$. 7. Theorem (3).

Let A, B be sets, and $f : A \longrightarrow B$ be a function. The following statements hold: (3a) Let U, V be subsets of B. Suppose $U \subset V$. Then $f^{-1}(U) \subset f^{-1}(V)$.

(3b) Let U, V be subsets of B.

(1) $f^{-1}(U \cup V) \supset f^{-1}(U) \cup f^{-1}(V)$. (2) $f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$. (3) $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.

(3c) Let U, V subsets of B. (1) $f^{-1}(U \cap V) \subset f^{-1}(U) \cap f^{-1}(V)$. (2) $f^{-1}(U \cap V) \supset f^{-1}(U) \cap f^{-1}(V)$. (3) $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.

8. Proof of Statement (3b2) of Theorem (3).

Let A, B be sets, and $f : A \longrightarrow B$ be a function. Let U, V be subsets of B. [We want to prove that $f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$.

What to do, really? We want to prove:

'For any object x, if $x \in f'(U \cup V)$ then $x \in f'(U) \cup f'(V)$.' Think about this before proceeding any further.]

Proof of Statement (3b2) of Theorem (3).

... Let U, V be subsets of B.

9. Remark.

Which of the statements is true? Which not?

(a) Let A, B be sets, and f : A → B be a function. Let S, T be subsets of A. Suppose f(S) ⊂ f(T). Then S ⊂ T.
(b) Let A, B be sets, and f : A → B be a function. Let U, V be subsets of B. Suppose f⁻¹(U) ⊂ f⁻¹(V). Then U ⊂ V.
(c) Let A, B be sets, and f : A → B be a function. Let H, K be subsets of A. f(H ∩ K) ⊃ f(H) ∩ f(K).

They are all false. (Can you provide counter-examples for the respective dis-proofs?)

10. Theorem (4).

Let A, B, C be sets, and $f : A \longrightarrow B, g : B \longrightarrow C$ be functions. The following statements hold:

- (4a) Let S be a subset of A. $(g \circ f)(S) = g(f(S))$.
- (4b) Let W be a subset of C. $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)).$

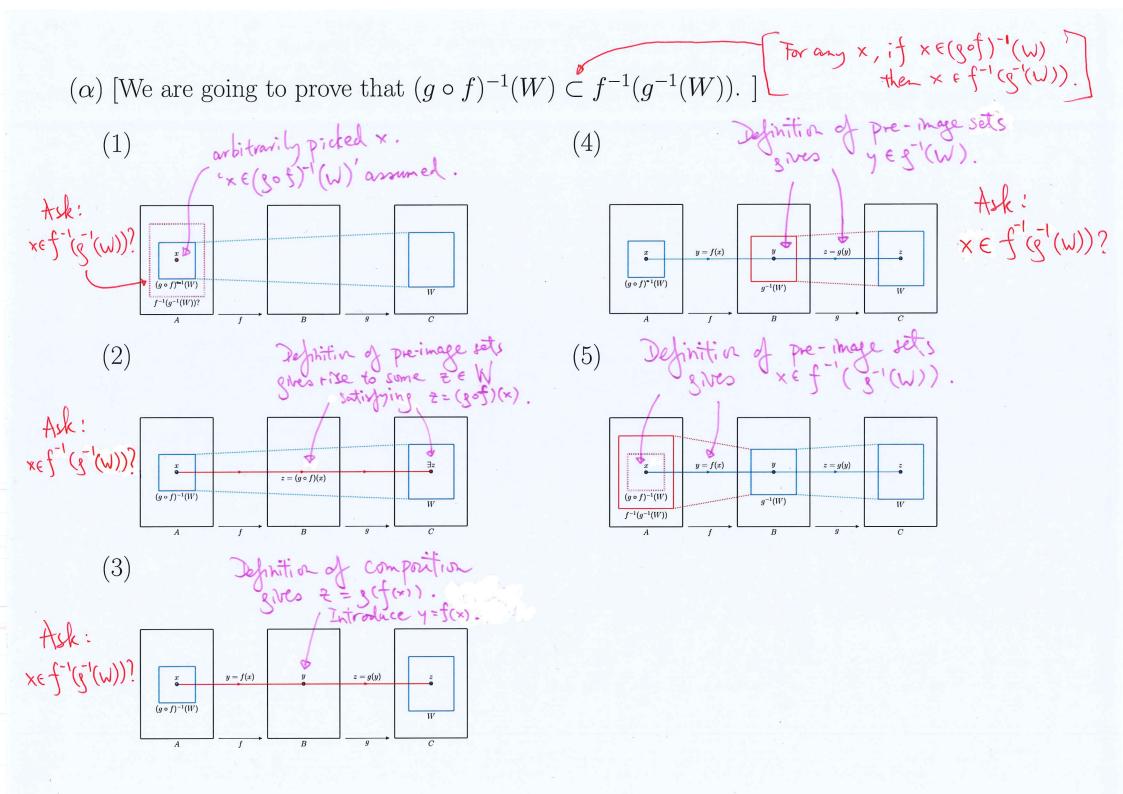
11. Proof of Statement (4b) of Theorem (4).

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Let W be a subset of C. [We want to prove the set equality $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$. Hence we separate arguments into two parts, each on a 'subset relation'.

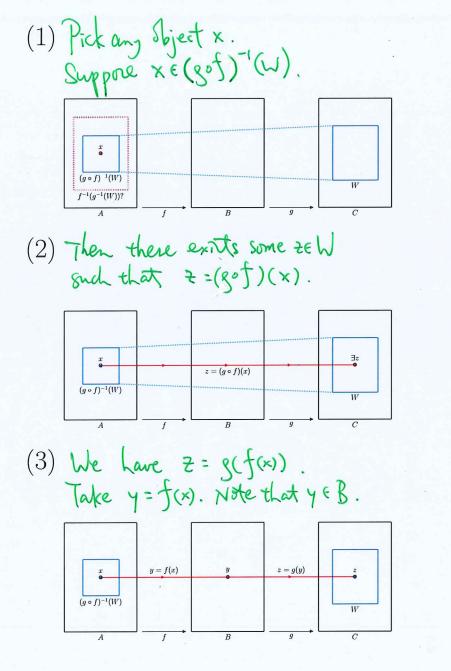
Which two?

$$\begin{aligned} &(\alpha) \ (g \circ f)^{-1}(W) \subset f^{-1}(g^{-1}(W)). \\ &\text{This reads:} \quad \text{For any Object } \mathsf{x}, \quad \text{if } \mathsf{x} \in (\mathfrak{g} \circ f)^{-1}(W) \text{ then } \mathsf{x} \in f^{-1}(\mathfrak{g}^{-1}(W)). \\ &(\beta) \ (g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W)). \\ &\text{This reads:} \quad \text{For any Object } \mathsf{x}, \quad \text{if } \mathsf{x} \in f^{-1}(\mathfrak{g}^{-1}(W)) \text{ then } \mathsf{x} \in (\mathfrak{g} \circ f)^{-1}(W). \end{aligned}$$

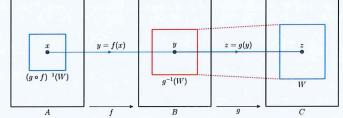
Think about this before proceeding any further.]

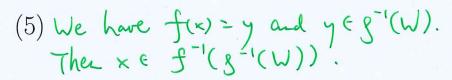


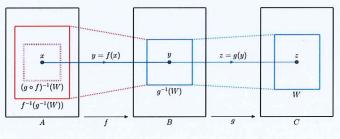
(α) [We are going to prove that $(g \circ f)^{-1}(W) \subset f^{-1}(g^{-1}(W))$.] For any \times , if $\times \in (g \circ f)^{-1}(W)$ then $\times \in f^{-1}(g^{-1}(W))$.]



(4) We have g(y)=g(f(x))= 2 and ZEW. Then yeg'(W).







It follows that $(g \circ f)^{-1}(w) \subset f^{-1}(q^{-1}(w)).$

Proof of Statement (4b) of Theorem (4).

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Let W be a subset of C. [We want to prove $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.]

(α) ... It follows that $(g \circ f)^{-1}(W) \subset f^{-1}(g^{-1}(W))$. (β) [We are going to prove that $(g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W))$.] (β) [We are going to prove that $(g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W))$.] (β) [We are going to prove that $(g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W))$.]

Pick any diject x.
Suppose
$$x \in f'(g'(w))$$
.
Then, by the definition of pre-image sets;
there exists some $y \in g'(w)$ such that $y = f(x)$.
Now $y \in g''(w)$.
Then, by the definition of pre-image sets,
there exists some $z \in W$ and that $\overline{z} = g(y)$.
We have $z \in W$ and $\overline{z} = g(y) = g(f(x)) = (g \circ f)(x)$. Then $x \in (g \circ f)'(w)$.
It follows that $f'(g'(w)) \subset (g \circ f)''(w)$.
It follows that $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.

12. Theorem (5).

Let A, B be sets, and $f : A \longrightarrow B$ be a function. The following statements hold:

- (5a) Let S be a subset of A. $f^{-1}(f(S)) \supset S$.
- (5b) Let U be a subset of B. $f(f^{-1}(U)) \subset U$.
- (5c) Let S be a subset of A. $f(f^{-1}(f(S))) = f(S)$.
- (5d) Let U be a subset of B. $f^{-1}(f(f^{-1}(U))) = f^{-1}(U)$.
- (5e) Let S be a subset of A, and U be a subset of B. $f(S \cap f^{-1}(U)) = f(S) \cap U$.

13. **Definition.**

Let A, B be sets and $f : A \longrightarrow B$ be a function. f is said to be **surjective** if the statement (S) holds:

(S): For any $y \in B$, there exists some $x \in A$ such that y = f(x).

Theorem (6). (Characterizations of surjectivity). Let A, B be sets and $f : A \longrightarrow B$ be a function. The following statements are equivalent:

- (I) f is surjective. (Ia) f(A) = B. (Ib) $f(A) \supset B$.
- (II) For any subset U of B, $f(f^{-1}(U)) \supset U$.
- (IIa) For any subset U of B, $f(f^{-1}(U)) = U$.
- (III) For any subset U of B, there exists some subset S of A such that U = f(S).
- (IV) For any subset T of A, $f(A \setminus T) \supset B \setminus f(T)$.
- (V) For any subset U, V of B, if $f^{-1}(U) \subset f^{-1}(V)$ then $U \subset V$.
- (VI) For any subset U, V of B, if $f^{-1}(U) = f^{-1}(V)$ then U = V.

Proof of Theorem (6)?

14. **Definition.**

Let A, B be sets and $f : A \longrightarrow B$ be a function. f is said to be **injective** if the statement (I) holds:

(I): For any $x, w \in A$, if f(x) = f(w) then x = w.

Theorem (7). (Characterizations of injectivity).

Let A, B be sets and $f : A \longrightarrow B$ be a function.

The following statements are equivalent:

- (I) f is injective.
- (II) For any subset S of A, $f^{-1}(f(S)) \subset S$.
- (IIa) For any subset S of A, $f^{-1}(f(S)) = S$.
- (III) For any subset S of A, there exists some subset U of B such that $S = f^{-1}(U)$.
- (IV) For any subset S, T of $A, f(S \cap T) \supset f(S) \cap f(T)$.
- (IVa) For any subset S, T of $A, f(S \cap T) = f(S) \cap f(T)$.
- (V) For any subsets S, T of A, if $f(S) \subset f(T)$ then $S \subset T$.
- (VI) For any subsets S, T of A, if f(S) = f(T) then S = T.

15. Theorem (8).

Let A, B be sets and $f : A \longrightarrow B$ be a function.

(8a) Let $\{U_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of B. $(\{f^{-1}(U_n)\}_{n=0}^{\infty}$ is an infinite sequence of subsets of A.) The following statements hold:

(1)
$$f^{-1}(\bigcap_{n=0}^{\infty} U_n) = \bigcap_{n=0}^{\infty} f^{-1}(U_n).$$

(2) $f^{-1}(\bigcup_{n=0}^{\infty} U_n) = \bigcup_{n=0}^{\infty} f^{-1}(U_n).$

(8b) Let $\{S_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of A. $(\{f(S_n)\}_{n=0}^{\infty}$ is an infinite sequence of subsets of B.) The following statements hold:

(1)
$$f(\bigcap_{n=0}^{\infty} S_n) \subset \bigcap_{n=0}^{\infty} f(S_n).$$

(2)
$$f(\bigcup_{n=0}^{\infty} S_n) = \bigcup_{n=0}^{\infty} f(S_n).$$

(8c) The statements below are logically equivalent:

(i) f is injective.

(ii) For any infinite sequence of subsets $\{S_n\}_{n=0}^{\infty}$ of A, $f(\bigcap_{n=0}^{\infty} S_n) = \bigcap_{n=0}^{\infty} f(S_n)$.