
MATH1050 Roots of polynomials with complex coefficients

1. Definition. (Roots of polynomials.)

Let u(x) be a polynomial with complex coefficients. Let α be a complex number.

We say α is a root of u(x) in C if u(α) = 0.
Remark. We observe that every polynomial with real coefficients is by definition a polynomial with complex
coefficients.

2. Theorem (1).

Suppose u(x) is a non-constant polynomial with complex coefficients, with deg(u(x)) = n.

Then u(x) has at most n distinct roots in C.

Proof of Theorem (1).

Suppose u(x) is a non-constant polynomial with complex coefficients, with deg(u(x)) = n. By assumption n ≥ 1.

Suppose it were true that u(x) had more than n distinct roots in C. Suppose α0, α1, α2, · · · , αn were n + 1

distinct roots of u(x) in C.

By assumption, u(αj) = 0 for each j = 0, 1, 2, · · · , n.

In particular u(α0) = 0. By the Factor Theorem, there would exist some u1(x) ∈ C[x] such that u(x) =

(x− α0)u1(x) as polynomials.

Note that 0 = u(α1) = (α1 − α0)u1(α1). Since α1 ̸= α0, we would have u1(α1) = 0. By the Factor Theorem,
there would exist some u2(x) ∈ C[x] such that u1(x) = (x− α1)u2(x) as polynomials.

For the same u2(x) ∈ C[x], we would have u(x) = (x− α0)(x− α1)u2(x) as polynomials.

Repeating the above argument, we would deduce that there existed some v(x) ∈ C[x] such that u(x) = (x −
α0)(x− α1) · ... · (x− αn)v(x) as polynomials.

By assumption u(x) is not the zero polynomial. Then v(x) is not the zero polynomial. (Why?) Therefore, we
would have n = deg(u(x)) = n+ 1 + deg(v(x)) ≥ n+ 1 + 0 > n. (Why?) Contradiction arises.

Hence u(x) has at most n distinct roots in C in the first place.

3. Fundamental Theorem of Algebra.
Every non-constant polynomial with complex coefficients has a root in C.
Remark. The proof of the Fundamental Theorem of Algebra is beyond the scope of this course. In the
discussion below, we take for granted the validity of the Fundamental Theorem of Algebra.

4. Theorem (2). (Factorization of polynomials with complex coefficients into ‘linear factors’.)

Suppose u(x) is a non-constant polynomial with complex coefficients, with deg(u(x)) = n, and with leading
coefficient an.
Then there exist some n complex numbers α1, α2, · · · , αn, not necessarily distinct, such that

u(x) = an(x− α1)(x− α2) · ... · (x− αn) as polynomials.

The n numbers α1, α2, · · · , αn are all the roots of u(x) in C.

Proof of Theorem (2). Exercise. (Apply the Fundamental theorem of Algebra and the Factor Theorem to
deduce that there exist some α ∈ C, and some degree-(n−1) polynomial v(x) with complex coefficients such that
u(x) = (x− α)v(x) as polynomials. Next repeat this argument for n− 1 times. Now stop by virtue of Theorem
(1).)
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5. Corollary (3). (Vieta’s Theorem, relating roots and coefficients of polynomials.)

Let u(x) be a polynomial with complex coefficients, of degree n ≥ 1, with its k-th coefficient being ak for each
k = 0, 1, 2 · · · , n.
Suppose α1, α2, · · · , αn are all the n roots of u(x) in C.
Then 

n∑
k=1

αk = −an−1

an
,

∑
1≤j1<j2≤n

αj1αj2 =
an−2

an
,

∑
1≤j1<j2<j3≤n

αj1αj2αj3 = −an−3

an
,

...
α1α2 · ... · αn = (−1)n · a0

an

Proof of Corollary (3). This is a tedious exercise in ‘comparing coefficients’ for the two sides of the equality

a0 + a1x+ a2(x) + · · ·+ anx
n = an(x− α1)(x− α2) · ... · (x− αn) as polynomials.

Remarks. Below are some special cases of Corollary (3), for ‘polynomials of low degrees’:

(a) Suppose n = 2. Then Corollary (3) gives α1 + α2 = −a1
a2

, α1α2 =
a0
a2

.

These equalities relate the coefficients of the quadratic polynomial u(x) with its sum of roots and its product
of roots. You have learnt them in school maths.

(b) Suppose n = 3. Then Corollary (3) gives

α1 + α2 + α3 = −a2
a3

, α1α2 + α2α3 + α3α1 =
a1
a3

, α1α2α3 = −a0
a3

.

(c) Suppose n = 4. Then Corollary (3) gives

α1 + α2 + α3 + α4 = −a3
a4

,

α1α2 + α3α4 + α1α3 + α2α4 + α1α4 + α2α3 =
a2
a4

,

α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 = −a1
a4

α1α2α3α4 =
a0
a4

.

It is by playing with the expressions on the right-hand-sides of these equalities, known as ‘symmetric polynomials
of the αj ’s’, that mathematicians discovered the ‘cubic formula’ and the ‘quartic formula’ for solutions of cubic
polynomial equations and quartic polynomial equations respectively, (analogous to the ‘quadratic formula’ of
quadratic equations). These were all known by the end of the eighteenth century. A further investigation into
the symmetry of such expressions for higher-degree polynomials led Galois and Abel onto the discovery that
there is no formula as such for solutions of higher-degree polynomial equations. This will be the theme in the
course Fields and Galois Theory.
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6. Theorem (4). (‘Pairing-up’ of complex roots for polynomials with real coefficients.)

Let u(x) be a polynomial with real coefficients. Let α be a complex number.

Suppose α is a root of u(x) in C.

Then ᾱ is also a root of u(x) in C.

Proof of Theorem (4).

Let u(x) be a polynomial with real coefficients. For each k ∈ N, denote by ak the k-th coefficient of u(x). Let α

be a complex number. Suppose α is a root of u(x) in C. Then 0 = u(α) = a0 + a1α+ a2α
2 + · · · .

By assumption ak ∈ R for each k ∈ R.

Then 0 = u(α) = a0 + a1α+ a2α2 + · · · = a0 + a1α+ a2α2 + · · · = a0 + a1ᾱ+ a2ᾱ2 + · · · = u(ᾱ).

Therefore ᾱ is also a root of u(x) in C.

7. Corollary (5).

Let u(x) be a polynomial with real coefficients. Let α be a complex number.

Suppose α is a non-real root of u(x) in C.

Then u(x) is divisible by the quadratic polynomial with real coefficients x2 − 2Re(α)x+ |α|2.

Proof of Corollary (5). Exercise. (Apply the Factor Theorem.)

8. Theorem (6). (Factorization of polynomials with real coefficients into linear or quadratic factors.)

Suppose u(x) is a non-constant polynomial with real coefficients, with deg(u(x)) = n.

Then u(x) factorizes as a product of linear polynomials with real coefficients and quadratic polynomials with
real coefficients of negative discriminant.
Proof of Theorem (6). Exercise. (Apply mathematical induction on the degrees of polynomials. At some
stage the Division Algorithm for polynomials will be needed; see the handout Basic results on polynomials
‘beyond school mathematics’ for its statement.)
Examples.

(a) x3 − 1 = (x− 1)(x2 + x+ 1) as polynomials.

(b) x4 + 2x2 + 1 = (x2 + 1)2 as polynomials.

(c) x4 + 1 = (x2 −
√
2x+ 1)(x2 +

√
2x+ 1) as polynomials.

9. Corollary (7).

Suppose u(x) is a polynomial with real coefficients, of odd degree. Then u(x) has at least one real root.

Proof of Corollary (7). This is a consequence of Corollary (6).
Remark. Below is a self-contained argument in the special case for cubic polynomials with real coefficients:

• Let u(x) be a degree-3 polynomial with real coefficients. By the Fundamental Theorem of Algebra, u(x)
has a root, say, α, in C. If α is real, then u(x) has a real root, namely α.
Suppose α is non-real. Then ᾱ is distinct from α, and is also a root of u(x) in C. By Corollary (5),
u(x) is divisible by the quadratic polynomial with real coefficients x2 − 2Re(α)x+ |α|2. There exists some
v(x) ∈ R[x] such that u(x) = (x2−2Re(α)x+ |α2|)v(x) as polynomials. It then follows that v(x) is of degree

1. Hence there are some a, b ∈ R such that a ̸= 0 and v(x) = ax+ b as polynomials. Now − b

a
is a real root

of u(x).
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