1. Definition.
Let S be a subset of IR.
Let A € S.

\ Is said to be a least element of S if

(A < x whenever x € S).

Well-Ordering Principle for integers (WOPI).
Let S be a non-empty subset of N.

S has a least element.

Remark. A more formal way to express 'S has a least element’ is: there exists some
A € S such that X is a least element of S.



2. Theorem (DAN). (Division Algorithm for natural numbers.)
Let m,n € N. Suppose n # 0.

Then there exist some unique q,7 € N such that m =gn+r and 0 < r < n.

Remark on terminology. In the statement of Theorem (DAN), the numbers ¢, r
are called the quotient and remainder in the division of m by n.

Proof of Theorem (DAN). The result follows from Lemma (E) and Lemma (U).
The argument for Lemma (E) relies on the Well-Ordering Principle for integers.

3. Lemma (E). (Existence part of Theorem (DAN).)
Let m,n € N. Suppose n # 0.
Then there exist some q,r € N such that m =qn +r and 0 < r < n.

Lemma (U). (Uniqueness part of Theorem (DAN).)

Let m,n € N. Suppose n # 0.

Let q,r,¢', 7" € N.

Supposem =qn+r and 0 <r <nandm=¢n+7r" and 0 <r' <n.
Then g = ¢ and r = 1.
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4. Proof of Lemma (E).
Let m,n € N. Suppose n # 0.

[Idea for the argument.

Remember that we want to name appropriate natural numbers ¢, r satisfying both
m=qn+rand 0 <r <n.

We put these two conditions in the form 0 < m — gn =17 < n.

This suggests we look for a candidate for r from the list of natural numbers

m—0-nm—1-n,m-—2n,m—3n,---

This is a descending arithmetic progression. Does it terminate or not?

[t has to terminate; otherwise, it would ‘descend into the negative integers’.

A candidate for r is ‘located” where this list terminates. (Why?)

With this candidate for » we also obtain a candidate for g. Now we are ready to

proceed with the formal argument.]



Proof of Lemma (E).
Let m,n € N. Suppose n # 0.
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5. Proof of Lemma (U).
Let m,n € N. Suppose n # 0.
Suppose ¢, 7, ¢, 7" € N. |
Suppose m = gn+rand 0 <r <nand m=¢n+7" and 0 <7’ < n.
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6. Corollary (DAZ1). (Division Algorithm for integers.)
Let m,n € Z. Suppose n > 0.

Then there exist some unique q,r € Z such that m = gn+r and 0 < r < n.
Proof of Corollary (DAZ1).

(a) [Existence argument’.] Let m,n € Z. Suppose n > 0. Note that m > 0 or m < 0.

e (Case 1). Suppose m > 0. Then, by Theorem (DAN), there exists some ¢, € N
such that m =gn+r and 0 < r <n.
e (Case 2). Suppose m < 0. |Idea: Is there an integer in the list

m+0-n,m+1-nm+2n,m+3n,---

which is non-negative? If yes, can we apply Theorem (DAN) to this non-negative
integer?]
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(b) [‘Uniqueness argument’.] Exercise.



Corollary (DAZ1). (Division Algorithm for integers.)
Let m,n € Z. Suppose n > 0.

Then there exist some unique q,r € Z such that m = qn +r and 0 < r < n.

Corollary (DAZ2). (Division Algorithm for integers.)
Let m,n € Z. Suppose n # 0.

Then there exist some unique q,v € Z such that m = qn +1r and 0 < r < |n].

Proof of Corollary (DAZ2). Exercise.

Remark on terminology. In each of Corollary (DAZ1) and Corollary (DAZ2), the
numbers ¢, r are called the quotient and remainder in the division of m by n.



7. Refer to Theorem (2) in the Handout De Moivre’s Theorem and roots of unity:

2m
Let n be a positive integer. Write 6, = —. Define w,, = cos(6,,) + tsin(6,,).
n

(a) wy, is an n-th root of unity.
(b) The n-th roots of unity are the n complex numbers of modulus 1, given by 1, w,,

2 n—1
Wnp™, ..., Whp .

Corollary (DAZ1) is the tacit assumption needed in the argument for this result.



8. Theorem (DIV).
Let m,n € Z. Suppose n # 0. m is divisible by n iff the remainder is 0 in the division

of m by n.
Proof of Theorem (DIV). Exercise.
Remark.  This result provides the connection between the definition of divisibility

and Division Algorithm.

Definition.

Letn € Z.

(a) n is said to be even if n is divisible by 2.
(b) n is said to be odd if n is not divisible by 2.

Theorem (O). (Equivalent formulation of the definition of odd-ness for
integers.)

Let n € Z. The statements (1), (1) are logically equivalent:

(1) n is odd.
(1) There exists some k € Z such that n = 2k + 1.

Proof of Theorem (O). Exercise.



